A simple optical probe of transient heat conduction
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We use a laser beam and a stopwatch to investigate transient heat conduction in Plexiglas and
glycerol samples chilled by ice water. The deflection of the laser beam is proportional to the thermal
gradient in the sample. Measurements of the beam deflection allow us to calculate the thermal
gradient as a function of time. Our empirical results fit the theoretical predictions very well and
show an initial increase in the thermal gradient followed by a gradual decrease as the entire sample
approaches the temperature of ice water. The procedure is simple and can be used as a lecture
demonstration, an afternoon’s experiment, or an extended investigation in an advanced laboratory

course. © 2010 American Association of Physics Teachers.
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I. INTRODUCTION

The theoretical treatment of transient heat conduction is a
wonderful illustration of the use of separation of variables,
Fourier series, and other advanced techniques. The concepts
are simple and concrete, allowing students to appreciate the
application of mathematics to everyday phenomena. As the
mathematics increases in complexity, the experimental con-
firmation becomes more gratifying. A typical experiment
makes use of thermocou}lz)les, whose insertion into samples
requires some machining.” We adopt a simpler procedure and
use a laser beam to probe the thermal gradient at selected
positions in a transparent sample.

The experimental arrangement is shown in Fig. 1. A laser
beam strikes the sample a distance z from the bottom of the
sample. We establish a thermal gradient by bringing ice wa-
ter into contact with the bottom of the sample. The thermal
gradient produces a refractive gradient because the refractive
index depends on temperature.2 For typical materials and
temperature ranges, dn/dT is approximately constant, and a
single value of dn/dT is usually reported for a particular
material.** Because dn/dT is typically obtained from mea-
surements using HeNe lasers,3’4 we too use a HeNe laser
since dn/dT can depend on wavelength.

It is well known that the deflection of the laser beam is
proportional to the refractive gradient in the sample.5 If the
refractive gradient of the sample is dn/dz at height z, then
the beam is deflected along the wall a distance

=~ (dn/dz)LR, (1)

where L is the length of the sample and R is the distance
from the sample to the wall. The minus sign appears because
we define h as a downward deflection, whereas z increases
upward. We substitute dn/dz=(dn/dT)(dT/dz) into Eq. (1)
and find

h=—LR(dn/dT)(dT/dz), (2)

where T is the temperature. By using Eq. (2), measurements
of h as a function of time can be compared with theory.

We need a theory for T(z,f) in our sample. The governing
equation is

ir_ T

= , 3
ot 9z ®)

where D is the thermal diffusivity. The initial condition is
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1(z,0) =T, (4)

where 7, is the ambient temperature, because the sample is
initially in thermal equilibrium at ambient conditions. The
boundary conditions are

7(0,:>0)=0 °C (5)
and
dT(H,t)/9z=0, (6)

where H is the height of the sample. In writing Eq. (5), we
assumed highly effective heat transfer between the sample
and the ice bath. (For heat to flow into the ice bath, the
temperature of the bottom of the sample must be higher than
the temperature of the ice bath, but we assume that this tem-
perature difference is vanishingly small.) Conversely, Eq. (6)
assumes negligible heat transfer between the sample and the
air. These approximations assume that air is much less dense
than water, and the air’s thermal conductivity is consequently
less than 5% of water’s thermal conductivity.6 The validity of
these approximations will be tested experimentally.

To solve Eq. (3), we use separation of variables, T(z,1)
=Z(z)7(t), substitute this form into Eq. (3), and obtain
Z(d7/dt)=1D(d*Z/ dz?) or (d*Z/dz?)/Z=(d7/df)/(D7). This
relation holds for all z and all #, which is possible only if both
sides are equal to the same constant, —k*. (For convenience,
we choose —k? instead of k.) We then have d7/dt=—Dk*r and
d?7Z/dz*=-k*Z. From here, most advanced students will be
able to derive the final result

T(z,t) = E Lsin[(p + l)71'z/H]
il
2
1 2
Xexp[— (p + 5) WZDZ/H2:| . (7)

In Eq. (2), we need T/ dz,

T < 2T, 1
—= cos p+5 mwz/H

dz o0 H
1 2
Xexp| —|p+ 2 Dt/H? |. (8)
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Fig. 1. The experimental arrangement. The laser beam is deflected by the
thermal gradient in the sample.

II. PROCEDURE

A room-temperature rectangular sample of length L and
height H is held in place by a clamp. A HeNe laser beam
(with a wavelength of 632.8 nm) is directed lengthwise
through the sample, perpendicular to the end surfaces, and at
a distance z above the bottom surface. The beam travels to a
wall a distance R=9.76 m, with R being much greater than L
and H. After securing the sample and the laser, a bowl of ice
water is raised from below until the water just contacts the
bottom surface of the sample. We define this time of contact
as 1=0.

At regular time intervals the position of the center of the
beam on the wall is marked in pencil. The vertical displace-
ment of the beam from its initial position is measured and
recorded. This procedure is repeated with a Plexiglas block
(H=7.88 cm and L=6.06 cm) for three values of z and with
a rectangular flask of glycerol (H=2.38 cm and
L=8.50 cm) for two values of z. In all cases, the sample
begins at room temperature. At least 1 day elapses between
experiments so that the sample’s initial condition is unaf-
fected by previous experiments.

III. RESULTS AND DISCUSSION

Results for Plexiglas are shown in Fig. 2. We used D and
dn/dT as fitting parameters. The fitting procedure is simple
because dn/dT affects only the height (not the shape) of the
curve. First D was adjusted until the theoretical peak oc-
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Fig. 2. Theoretical curves fitted to the measured beam displacements for a
Plexiglas sample. For z=0.89 cm the fitting parameters are D=1.2
X 1073 cm?/s and dn/dT=-5.6%10" K~'. For z=0.50 cm we obtained
D=1.1x107 cm?/s and dn/dT=-4.0X107 K~'. For z=0.30 cm we
found D=1.1X 107 cm?/s and dn/dT=-7.4x 10 K.
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Fig. 3. Theoretical curves fitted to the measured beam displacements for a
glycerol sample. For z=1.40 cm the fitting parameters are D=8.3
X 107* cm?/s and dn/dT=-1.49X10* K-!. For z=0.70 cm, the fitting
parameters are D=7.3X 10~ c¢cm?/s and dn/dT=-1.39X10~* K=\

curred near the time of the measured peak deflection; then
dn/dT was adjusted until the theoretical curve had nearly the
same height as the experimental curve. Small adjustments
were made to improve the fit visually. The method of least-
squares would allow us to determine the parameters with
greater precision. However, we know z to only two signifi-
cant digits, so improved precision is not justified.

For z=0.89 cm we found D=1.2X107 cm?/s
and dn/dT=-5.6X107 K~!. For z=0.50 cm we used
D=1.1Xx10" cm?/s and dn/dT=-4.0Xx107 K!. For
7z=030 cm we obtained D=1.1X107 cm?/s and
dn/dT=-7.4%107 K~!. Our results for D are within 10%
of one another and the value 1.06X 107> cm?/s found in
Ref. 7. However, our results for dn/dT differ significantly
from one another and from the reported value’ of
—-1.2X 107 K~!. We believe that the error in our results is
due to the difficulty of getting the ice water to wet the entire
bottom surface of the sample without submerging some of
the sample. If the ice water rises even 1 mm over the bottom
of the sample, heat can flow through the sides of the sample
into the ice water, compromising the validity of our one-
dimensional model. Despite this difficulty, we find good
qualitative agreement between the theoretical curves and the
measured data.

Results for glycerol are shown in Fig. 3. For z=1.40 cm
the best fit is achieved with D=83X10™* cm?/s
and dn/dT=-1.49Xx10~* K~!. For z=0.70 cm we find D
=73X10™* cm?/s and dn/dT=-1.39x10™* K~'. Qualita-
tively, the fit appears excellent. Quantitatively, there is mod-
est agreement between our results and the published values
for glycerol, D=9.4x10"* cm?/s and dn/dT=-2.4
x 107 K1

Because our measurements are proportional to J7T/dz
rather than 7, we can directly observe that J7/dz increases to
a maximum value before decreasing. The explanation is as
follows. The thermal gradient is initially zero when the
sample is in equilibrium with the ambient conditions. Once
contact is made with the ice water, a large thermal gradient
appears at the very bottom of the sample. As heat conse-
quently flows downward, the thermal gradient spreads up-
ward through the sample. When the “cold front” sweeps
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through a layer, the thermal gradient there has its greatest
value because the lower layer is cold, while the upper layer is
still warm. After the cold front has passed through, the upper
layer has also begun to cool, and the thermal gradient de-
creases. The cold front passes lower positions at earlier
times, as illustrated by our data: For small z, the maximum
displacement occurs earlier. It is instructive for students to
explain these qualitative features of the data. These observa-
tions of d7/dz are more interesting than observations of 7,
which monotonically decreases everywhere in the sample.

IV. CONCLUSIONS

Within minutes, the experiment demonstrates that the ther-
mal gradient of a sample dipped in ice water increases and
then decreases. This phenomenon is an accessible mystery
for students at all levels. Introductory students can under-
stand the explanation qualitatively, and more advanced stu-
dents can supplement their understanding with the full math-
ematical treatment. The experiment can be performed as a
lecture demonstration, an afternoon’s laboratory activity, or
an extended investigation of the thermal and optical proper-
ties of various transparent materials.
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of organized complexity.

Science and Complexity

Warren Weaver published a seminal paper in 1948 in Science that discussed science and
complexity. Two-body problems, the main focus of classical physics, are described as simple. The
general behavior of millions of reasonably identical bodies, each acting unpredictably, can be
calculated with the aid of probability theory and statistical mechanics. These he called the prob-
lems of disorganized complexity. He then turned his attention to systems involving numbers of
particles, agents, or bodies, more than two or three but much less than millions. Systems of this
kind are encountered in biological, medical, psychological, economic, social, and political sci-
ences. They behave in an organized way. He called these the problems of organized complexity
and noted that, although they are well described, the underlying processes are poorly understood.
Weaver then asserted that, within the next fifty years, science must learn to deal with the problems

George A. Cowan, Manhattan Project to the Santa Fe Institute (University of New Mexico Press, 2010) p. 144.
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