
Ch. 14 One Dim Wells

What does this picture mean?   If we had
A mass on a spring, in one dim, then
the potential would look like a parabola 
(1/2 k x2)

For our well--we have a one dimensional superball bouncing 
between walls at 0 and L (or -L/2 and L/2)---we could make 
dimensions anything.   The walls may be infinitely hard (i), or if 
the ball is thrown with enough energy the ball will break 
through (ii)
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There are other potentials we might consider, but 
square wells (infinite or finite) are starting points.   
Hydrogen has a coulomb potential. 

Square well 
If the energy of the particle in 
the well is less than Vo then 
the particle is bound.  

Inside the well    E-[V=0 in the well]=KE  
Inside the well, KE is positive. 

The S.W.E (time indep) describes the time independent wave 

function.   Our interpretation is that *dx  describes the 
probability of the particle being in this range dx---this must 
physically be smoothly continuous.    A discontinuity in this---
would be like --jump in velocity (infinite acceleration---bad).

So boundary conditions at left and right edge for BOTH THE 
WAVEFUNCTION AND FIRST DERIVATIVE. 
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We have a differential equation, we have a set of boundary 
conditions ----and also NORM.   (NORMALIZATION--NOT 
CHEERS). 

We start by looking at the special case (diffeq -101)
THE INFINITE SQUARE WELL.
This just means the walls are really really rigid. 

• We must solve in region I
• Region II
• Region III
• Apply boundary conditions
• Normalize
• Find any relevant constants (if needed).
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Note--these are not three different "V"s, but simply a single 
function that is piecewise continuous.  V has a value 
everywhere. 

The interesting region is region II   (the particle never makes it 

outside the well ---so the wavefunction =0 in region I or 
region III---we show later).

Region II
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Diffeq 101

'' +k2       Has solutions that look like    

These are all different ways of saying the same functions----we 
can put pieces together to make them look the same.  We use 
the first, but all have constants A and constants B and also k. 

Recall k2= 

Plug in the solution to 
check.

• When we normally solve diffequ---we have "k" given (like 
giving energy here)

• We have B.C. given
• We solve using "k" and B.C. to find constants A, B.

• Here we will find that there are only certain values of k that 
are allowed

○ Other values cannot ever satisfy B.C.

○ The energy values En are called the "eigenvalues" (of 
energy)

○ The relating wave functions are the "eigenstates" 
(standing wave or stationary states)

• kn  ---that relate to specific energies En   

• With specific B.C and initial conditions --we can find 
everything. 
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Remember we are solving in region II.   For a given eigen-
number--n, we might have something like……..

In the last step, we put back together the full time dependent 
solution.    (after finding the individual stationary states). 

With   

Where are we right now---we have the form of the solution for 
region II only.     

We do not have --region I or III, we do not have the allowed kn  
An    Bn   ----

Begin by tackling region I and III---I told you that  is zero, but 
let's show it. 
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What boundary condition did we satisfy at negative x space----?
We can't have infinite wavefunction.   No infinite probability .
We also believe that the particle is bounded to the universe, so 
the wavefunction must decrease as x goes out to infinity (either 
way).   To satisfy BC---we make C in region I =0.    

The term with D in it, goes to zero all on it's own---regardless of 
what finite value of D we have.    exp( infinite* negative x val). 

So--- in regions I and III =0.    We can focus on finding 
remaining constants in region II
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We are given  "m" and "L"   and the specific potential 
(everywhere), and rules of the game (boundary 
conditions). 

Back to region II 

We will start imposing boundary conditions ---first at x=0, 

• Normally we would now impose B.C. 

○ Extra constants got knocked out from
○ zero on the left---no need for doing the work from this 

extra B.C. here
○

○

• Since I was zero---

• Onto x=L where same deal occurs (no need for derivative 
continuity----there is a known kink in this wavefunction at 
infinite barrier---goofy and unreal, but we chose that 
idealized problem).  
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The last constant is found in this case using Normalization.

In regions I and III we have  (x) =0  ---BC---required for infinite 
potential 

•

In region II we imposed BC---that wavefunction is continuous at x=
0---gave A's=0

•

In region II we imposed BC---that wavefunction is continuous at x=L, 
this gave allowed kns    which gives Energy

•

That leaves B's---which will be found using normalization. •

Think of each region being bounded by two sides with    ' being 
continuous

•

At + and - infinity-----the wavefunction must not blow up (probably 
should be zero). 

•

The B.C. and Norm---give sufficient number of equations to solve for 
constants. (sometimes there is redundancy)

•

Summary of events------

We have the A's, the B's, and the k --or n---or E  for this system 
that allow for boundary conditions to be satisfied. 

In other words---since we have solved the form of differential 
equation for different possible values of n---we have really 
solved an infinite number of diffeq---with differing values of the 
sep constant E
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Putting it all together, and recalling that our solution is a 
piecewise continuous function. 

Or we could go back and just look at what we called k---back when 
it was first introduced.   

○ They are redundant linearly dependent functions---n=-1 
gives same as n=1 except for picking constant

• Why don't we need negative values of n----

○ We do sometimes----
○ Really we would go back to beginning and for region II  we 

would ask "what is solution to diffeq for the case E=0"

 Remember we just solved diffeq   101-------NOT 102,

○ It is not needed in this case---but sometimes it is needed 
(the E=0 solution)---in general don't forget it

• Why don't we need the n=0 value of "n"

• Since each full solution satisfies the diffeq  -----can't I add 
solutions like a little bit of the n=1   function, plus a little bit of 
the n=3, and some n=4…..(any linear combination) and still 
solve the diffeq?
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Continuing questions on solutions to SWE

○ YES---Hell yes----

○ That is what a wave packet (particle) is all about--right?

○ WE MUST RECALL THAT THE PHYSICAL SOLUTION IS (x,t), ….not 

(x)--and that linear combinations are of the form

• Can I take linear comb. of solutions

This leads to cross terms in time dependence.   That is--time 
dependent probability distributions are composed of summing 
over STATIONARY STATE solutions (the eigenstates)--which 
each have different time dependence. 

For example lets just add two such states below

The A's are there to renormalize ---we are reusing the letter A.
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Note the result was put in 
terms of h, not h-bar.

For the case of the infinite square well---the energies, 
frequencies, and wavelengths relate and have pictures like 
waves on a string. ---same states---

Just as with waves on a string---the infinite potentials at the 
walls---hold the wavefunction down tight at the ends (x=0 and 
L).  There are an integer number of half wave cycles between 0 
and L for stationary state solutions. 
IF I CHANGE THE LOCATION OF THE METER STICKS---SO THAT 
LEFT EDGE IS NOT AT ZERO---THE PICTURES FOR THE 
SOLUTIONS CANNOT CHANGE (HOW WOULD THE WELL KNOW 
I MOVED METER STICKS?   SOLUTIONS--LOOK DIFFERENT 
FORMULA  
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We will now extend solutions to other picture wells, barriers, 
non-infinite.  

• Setting up the equations (B.C.) leading to solutions
• And examine solutions
• We will often skip over math intermediates (quantum 

course)
• We need to focus on the meaning of some answers. 

We will examine:

SEMI-Infinite well

Note in region I    that V(x)=infinite---so wavefunction is zero there.   In 
region II    V(x)=0   ….so far I don't need a symbol for the potential.  In 
region III      V(x)=V      (probably should be Vo) 
--it is the only "V" around today, and is constant. --Special case. 
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In region III where the constant potential is V, then 
the SWE looks like.  

In region I   the form of wavefunction=0   •
In region II---same FORM as before•
In region III we have introduced kappa to make constant 
real---and explicitly yield correct growth/decay functional 
form in this region.   

•

NOW apply BC     Boundary I to II, then Boundary II-III    (and 
implied boundary III to infinity---never blow up at inf). 

•

Summary--

We applied a boundary condition at x=0--and found constant 
An=0.  We don't know ks or Bs.
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But Dr. Colbert---why, why are you taking us to infinity 
now?  Why?   https://www.youtube.com/watch?
v=Tjqq3ElVYlg

•

I thought up a reason I thought it up quick--•
There is a zero on one side---We'll fix it up there and bring it 
back here.

•

Really---I can see a zero come up by applying the B.C. at 
infinity--Zero's knock out terms, reduce clutter, make the 
math cleaner.   

•

We will now apply the boundary condition at x=+infinity.

We have the An's=0 and the Cn's=0----so the solution at x=L on 
either side so far looks like.   And then derivative terms.

Go back and look at solution we wrote for region III
Set =not infinite at x=infinity.  The term that 
wouldst blow up ---must go. 
We can't have infinite probability of finding particle
at infinity.  That would not be normalizable. 
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Yes--this is a transcendental function ---it can only be solved 
numerically.  So we are "given" a particular potential (V) and 
then find the allowed BOUND ENERGIES.    We get different 
functions for the case E>V     (then no kappa---)

• The numerical solutions will find limited number (not infinite) 
of Energies that work---above some max---NOT BOUND

○ Longer waves mean lower energies than the infinite well

○ Part of the wavefunction is outside the well

 Where the Kinetic energy is negative---Yeah--I said it. 

○ There is a probability of finding the particle inside the 
barrier

• The pictures still look like "half wave-ish", "two half wave-
ish", "three half wave-ish"   but stretched longer

Notables:
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No---the wave interferes itself away unless it meets 
standing wave like conditions (B.C.)---sorry

Wait---can't I make the energy anything I want --?
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The finite well---https://www.youtube.com/watch?

v=ud1zpHW3ito

So this is a finite well, the sides (edges) might be at say 0 to L or   

• We know the form of solutions in each region  I, II, III---
• We know to impose the B.C. at infinity---either + or -   and 

to start out by omitting the offending "blows up" term. 

-L/2 to +L/2---but me moving the meter stick location does not 
change the pictures.   We will consider solutions for bound 
state energies only      E<V.     When E> V--the particle will be 
free. 

So, just starting here--we have A's, B's, C's, D's, and Energies(n, 
k's)---to find.   Five (sets) of constants.
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How can we find five constants?
We must have five equations.

   and   '     continuity   at both   x= left, right edges. 
AND---NORM.    

We can set up the equations----and then give some results or 
discuss. ---meaning, be prepared to do that. 

Free Particle--not bound
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For the Free particle case ---(really always) we are 
free to make some choices in the offset of potential. 
We could also have a barrier rather than a well. 

This free particle case--the particle behaves like "optics"

I shall decide to send a wave in from left to right perhaps
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So, I can decide what to make A   ---the left going wave is 
determined by reflectionsssssss.   A somehow indicates the 
intensity or flux of particles entering.   We expect there will 
be some wave reflection at the first interface (and 
transmission), and some additional wave reflection at the 
second interface (and transmission).   The reflected waves 
may interfere.     So ---again at either interface there is a ---
right going wave and a left going wave----
https://www.youtube.com/watch?v=dZmZzGxGpSs

The k's in each region were known.  Any energy can be selected 
for free particle systems. 
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Note---that since k(I) and k(III) are the same----then the bundle 
of energy that got through is the same length.  If the potential 
in region III differs---then the speed changes.   If the particle 
beam is travelling slower in region III   (and the beam is 
continuous), then the relative intensity will be greater.  

In more general cases you will see a relative speed come into 
the Transmission term.   

I've given the answer for this case.   kII is known (given/chosen). 
And we should note that T +R =1        (rate at which energy enters 
=rate at which it leaves--once in steady state). 

So once we know Transmission---we know Reflection (and vice 
versa).

THERE ARE VALUES OF      kII L for which T= either 0 or 1. 
Look at the sin term.
I can construct systems with either full or zero transmission!!!!!!

   Ch. 14 square Page 25    



So, the wavelength and energy are related by k in the material.   
We pick what energy (frequency) to send in---and this (and 
material properties ---which is "V" here ) determines 
wavelength in all regions.  Then by picking "L"---properly we 
can get full transmission.   ANTI REFLECTION COATED OPTICS----
https://static1.squarespace.com/static/592e542a579fb3611cbe
af8c/t/594769be1e5b6c4c4dd1746f/1497852354059/Ngomad+
Mobile+Display+Enhancer+-+Technical+Bulletin.pdf
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We could use the same techniques to analyze these systems 
and more.  We can add little defects in a region (perturbation) 
and get approximate impact of those (little bumps in potential).

…..and more. 
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