Ch. 14 One Dim Wells
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What does this picture mean? If we had
A mass on a spring, in one dim, then

the potential would look like a parabola -A A
(1/2 k x?) X=0

For our well--we have a one dimensional superball bouncing
between walls at 0 and L (or -L/2 and L/2)---we could make
dimensions anything. The walls may be infinitely hard (i), or if
the ball is thrown with enough energy the ball will break
through (ii)

o) ©
: V= o
) 0J+4510¢
— = 0 0 3¢
i el \/7\1 V.
o [ 0

Ch. 14 square Page 1



There are other potentials we might consider, but
square wells (infinite or finite) are starting points.
Hydrogen has a coulomb potential.

Square well \/47
If the energy of the particlein B —
the well is less than V, then L/-

the particle is bound.
0 L

Inside the well E-[V=0 in the well]=KE
Inside the well, KE is positive.
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The S.W.E (time indep) describes the time independent wave
function. Our interpretation is that y y dx describes the
probability of the particle being in this range dx---this must
physically be smoothly continuous. A discontinuity in this---
would be like --jump in velocity (infinite acceleration---bad).

So boundary conditions at left and right edge for BOTH THE
WAVEFUNCTION AND FIRST DERIVATIVE.
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We have a differential equation, we have a set of boundary
conditions ----and also NORM. (NORMALIZATION--NOT
CHEERS).

We start by looking at the special case (diffeq -101)
THE INFINITE SQUARE WELL.
This just means the walls are really really rigid.

We must solve in region |

Region Il

Region Il

Apply boundary conditions

Normalize

Find any relevant constants (if needed).
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Note--these are not three different "V'"s, but simply a single
function that is piecewise continuous. V has a value

everywhere.
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The interesting region is region Il (the particle never makes it
outside the well ---so the wavefunction y=0 in region | or
region lll---we show later).

Region Il
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Diffeq 101

y" +k2 y=0  Has solutions that look like A (o5 K) + B gr(kx)

These are all different ways of saying the same functions----we
can put pieces together to make them look the same. We use
the first, but all have constants A and constants B and also k.

Recall k?= 2 ) ‘E/ﬁz'

Plug in the solution to
check.

e When we normally solve diffequ---we have "k" given (like
giving energy here)

e We have B.C. given

e We solve using "k" and B.C. to find constants A, B.

e Here we will find that there are only certain values of k that
are allowed
e k, ---that relate to specific energies E,
o Other values cannot ever satisfy B.C.
o The energy values E, are called the "eigenvalues" (of
energy)
o The relating wave functions are the "eigenstates"
(standing wave or stationary states)
e With specific B.C and initial conditions --we can find
everything.
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Remember we are solving in region Il. For a given eigen-
number--n, we might have something like........
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In the last step, we put back together the full time dependent
solution. (after finding the individual stationary states).
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Where are we right now---we have the form of the solution for
region Il only.

ﬁ/ \K(X\ = /\{\ C@é(Kn)b + @D S'A(Kn)b

We do not have --region | or lll, we do not have the allowed k,
An Bn -===

Begin by tackling region | and Ill---1 told you that y is zero, but
let's show it.

Ch. 14 square Page 7



Clawm s Fhat %: - Yor S — Sfoen
I ' /601_(7”/ Keer e
Fol Now
dlkf = [0 feaity <P — C
)X"' 131/24‘4 7U v - F

CeastX’  site 7
> 52LonS

When J 15 = e L term plesd 0P
5ot Satisty BL. C =0

1[9/" o DO oy 3 6 + 00 (/VD
Foes 7o O

Wt h /4ﬂ-&}

What boundary condition did we satisfy at negative x space----?
We can't have infinite wavefunction. No infinite probability .
We also believe that the particle is bounded to the universe, so
the wavefunction must decrease as x goes out to infinity (either
way). To satisfy BC---we make C in region | =0.

The term with D in it, goes to zero all on it's own---regardless of

what finite value of D we have. exp( infinite* negative x val).

L1 hewise. |1~ (egion 71 %Uﬂ: =
ImPose.  acldlitional,  B.C.

So---y in regions | and Il =0. We can focus on finding
remaining constants in region |l
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We are given "m" and "L" and the specific potential
(everywhere), and rules of the game (bo ry
conditions). Y

@

-
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Back to region Il Lf) = An (gﬁ(;("x) + QAL{//)[K,,X)
N

We will start imposing boundary conditions ---first at x=0,
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e Normally we would now impose B.C. a’yg/) = @L—D’L
e Since y, was zero--- i(_’o X o
o Extra constants got knocked out from = ~+
O zero on the left---no need for doing the work from this

extra B.C. here
O

O

e Onto x=L where same deal occurs (no need for derivative
continuity----there is a known kink in this wavefunction at
infinite barrier---goofy and unreal, but we chose that
idealized problem).

B.C., o+ x=|
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The last constant is found in this case using Normalization.
Summary of events------
e Inregions | and Il we have wy(x) =0 ---BC---required for infinite

potential
e |nregion Il we imposed BC---that wavefunction is continuous at x=
0---gave A's=0

e |nregion Il we imposed BC---that wavefunction is continuous at x=L,
this gave allowed kns which gives Energy

e That leaves B's---which will be found using normalization.

e Think of each region being bounded by two sides with ¢y ' being
continuous

e At + and - infinity-----the wavefunction must not blow up (probably
should be zero).

e The B.C. and Norm---give sufficient number of equations to solve for
constants. (sometimes there is redundancy)
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We have the A's, the B's, and the k --or n---or E for this system
that allow for boundary conditions to be satisfied.

In other words---since we have solved the form of differential
equation for different possible values of n---we have really
solved an infinite number of diffeq---with differing values of the
sep constant E
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Putting it all together, and recalling that our solution is a
piecewise continuous function.
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Or we could go back and just look at what we called k---back when
it was first introduced.

e Why don't we need negative values of n----

O© They are redundant linearly dependent functions---n=-1
gives same as n=1 except for picking constant

e Why don't we need the n=0 value of "n"

o We do sometimes----
o Really we would go back to beginning and for region Il we
would ask "what is solution to diffeq for the case E=0"
o Itis not needed in this case---but sometimes it is needed
(the E=0 solution)---in general don't forget it
= Remember we just solved diffeq 101------- NOT 102,

e Since each full solution satisfies the diffeq ----- can't | add
solutions like a little bit of the n=1 function, plus a little bit of
the n=3, and some n=4.....(any linear combination) and still
solve the diffeq?
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Continuing questions on solutions to SWE

e Can | take linear comb. of solutions
o YES---Hell yes----

o That is what a wave packet (particle) is all about--right?
o WE MUST RECALL THAT THE PHYSICAL SOLUTION IS ¥(x,t), ....not
Y(x)--and that linear combinations are of the form

Yixs = Zave

[
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St

This leads to cross terms in time dependence. That is--time
dependent probability distributions are composed of summing
over STATIONARY STATE solutions (the eigenstates)--which
each have different time dependence.

For example lets just add two such states below
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The A's are there to renormalize ---we are reusing the letter A.
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— > 2
/:/, - /] L - Note the result was put in
L m L° terms of h, not h-bar.

For the case of the infinite square well---the energies,
frequencies, and wavelengths relate and have pictures like
waves on a string. ---same states---
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Just as with waves on a string---the infinite potentials at the
walls---hold the wavefunction down tight at the ends (x=0 and
L). There are an integer number of half wave cycles between 0
and L for stationary state solutions.

IF | CHANGE THE LOCATION OF THE METER STICKS---SO THAT
LEFT EDGE IS NOT AT ZERO---THE PICTURES FOR THE
SOLUTIONS CANNOT CHANGE (HOW WOULD THE WELL KNOW
| MOVED METER STICKS? SOLUTIONS--LOOK DIFFERENT
FORMULA
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We will now extend solutions to other picture wells, barriers,
non-infinite.

We will examine:
e Setting up the equations (B.C.) leading to solutions
e And examine solutions
e We will often skip over math intermediates (quantum
course)
* We need to focus on the meaning of some answers.

SEMI-Infinite well
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Note in region | that V(x)=infinite---so wavefunction is zero there. In
region Il V(x)=0 ....sofarldon't need a symbol for the potential. In
regionlll  V(x)=V  (probably should be V,)

--it is the only "V" around today, and is constant. --Special case.

And £l éaE,/ K, = W

N
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In region |l where the constant potential is V, then
the SWE looks like.
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Summary--

e Inregion| the form of wavefunction=0

e In region llI---same FORM as before

e Inregion lll we have introduced kappa to make constant
real---and explicitly yield correct growth/decay functional
form in this region.

e NOW apply BC Boundarylto ll, then Boundary ll-lll  (and
implied boundary Il to infinity---never blow up at inf).

Bl0 9= Y(9

~U X

L5 e O = A (os(a0) + 3, $n(x, a)
_f;:*:f Mfz.catD - = a ! — > /40 =0
e v Lo/ AP

We applied a boundary condition at x=0--and found constant
An=0. We don't know ks or Bs.
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We will now apply the boundary condition at x=+infinity.

e But Dr. Colbert---why, why are you taking us to infinity
now? Why? https://www.youtube.com/watch?
v=Tjgq3EIVYlg

e | thought up a reason | thought it up quick--

e Thereis a zero on one side---We'll fix it up there and bring it
back here.

e Really---1 can see a zero come up by applying the B.C. at
infinity--Zero's knock out terms, reduce clutter, make the
math cleaner.

(;)_C_ 73S X —= X

p o e due

Go back and look at solution we wrote for region |
Set =not infinite at x=infinity. The term that
wouldst blow up ---must go.

We can't have infinite probability of finding particle
at infinity. That would not be normalizable.

Bieo ar ysl L 0,

%j[wi-) = %E(F Le )

We have the An's=0 and the Cn's=0----so the solution at x=L on
either side so far looks like. And then derivative terms.
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Bc.
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Yes--this is a transcendental function ---it can only be solved
numerically. So we are "given" a particular potential (V) and
then find the allowed BOUND ENERGIES. We get different
functions for the case E>V  (then no kappa---)

—
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Notables:
e The numerical solutions will find limited number (not infinite)
of Energies that work---above some max---NOT BOUND
e The pictures still look like "half wave-ish", "two half wave-
ish", "three half wave-ish" but stretched longer
o Longer waves mean lower energies than the infinite well
o Part of the wavefunction is outside the well
o There is a probability of finding the particle inside the
barrier
= Where the Kinetic energy is negative---Yeah--I said it.
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Wait---can't | make the energy anything | want --?
No---the wave interferes itself away unless it meets
standing wave like conditions (B.C.)---sorry
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The finite well---https://www.youtube.com/watch?
v=udlzpHW3ito
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So this is a finite well, the sides (edges) might be at say O to L or
-L/2 to +L/2---but me moving the meter stick location does not
change the pictures. We will consider solutions for bound
state energiesonly  E<V. When E> V--the particle will be
free.

e We know the form of solutions in each region 1, II, lll---

e We know to impose the B.C. at infinity---either + or - and
to start out by omitting the offending "blows up" term.
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So, just starting here--we have A's, B's, C's, D's, and Energies(n,
k's)---to find. Five (sets) of constants.
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How can we find five constants?
We must have five equations.
v and ' continuity at both x=left, right edges.

AND---NORM.
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We can set up the equations----and then give some results or
discuss. ---meaning, be prepared to do that.
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For the Free particle case ---(really always) we are
free to make some choices in the offset of potential.
We could also have a barrier rather than a well.

This free particle case--the particle behaves like "optics"
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| shall decide to send a wave in from left to right perhaps
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So, | can decide what to make A ---the left going wave is
determined by reflectionsssssss. A somehow indicates the
intensity or flux of particles entering. We expect there will
be some wave reflection at the first interface (and
transmission), and some additional wave reflection at the
second interface (and transmission). The reflected waves
may interfere. So ---again at either interface there is a ---

right going wave and a left going wave----
https://www.youtube.com/watch?v=dZmZzGxGpSs
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The k's in each region were known. Any energy can be selected
for free particle systems.
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Note---that since k() and k(lll) are the same----then the bundle
of energy that got through is the same length. If the potential
in region Il differs---then the speed changes. If the particle
beam is travelling slower in region lll (and the beam is
continuous), then the relative intensity will be greater.

/7 7) Yl
L gt

In more general cases you will see a relative speed come into
the Transmission term.
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I've given the answer for this case. kj is known (given/chosen).
And we should note that T +R =1 (rate at which energy enters
=rate at which it leaves--once in steady state).

So once we know Transmission---we know Reflection (and vice
versa).

THERE ARE VALUES OF kL for which T=either O or 1.
Look at the sin term.
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Note  — when s iel =0
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So, the wavelength and energy are related by k in the material.
We pick what energy (frequency) to send in---and this (and
material properties ---which is "V" here ) determines
wavelength in all regions. Then by picking "L"---properly we
can get full transmission. ANTI REFLECTION COATED OPTICS----
https://staticl.squarespace.com/static/592e542a579fb3611cbe
af8c/t/594769bele5b6c4c4dd1746f/1497852354059/Ngomad+
Mobile+Display+Enhancer+-+Technical+Bulletin.pdf
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We could use the same techniques to analyze these systems
and more. We can add little defects in a region (perturbation)
and get approximate impact of those (little bumps in potential).

..... and more.
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