CSCI 3400 Data Structures

Course Description

The design, analysis, implementation, and evaluation of fundamental structures including lists, stacks, queues, trees, hash tables, heaps, and graphs. Sorting algorithms are also analyzed and implemented.

Prerequisites: CSCI 1302 (Programming Principles II)

Textbook: none required

Optional: Data Structures and Algorithms Using C#

Michael McMillan ISBN-10: 0521670152 Also on Google Docs

Grades: Final grade is determined by performance on the following:

Test #1 25 % Test #2 25 %

Homework and/or quizzes 10 % No late homework accepted.

Final Exam 40 %

Course Grade Scale: A 92 - 100 After each exam, I adjust the grading scale if necessary.

B 84 - 92 C 74 - 84 D 64 - 74 F 0 - 63

Attendance: You are strongly encouraged to attend class. I do not repeat lectures or provide notes. You are responsible for all class material whether or not you attend class. If you stop attending class, I have the right to withdraw you. However, withdrawing from the class is the responsibility of the student. Do not assume I will drop you from the class. If you stop attending after midterm, I will give you a WF.

Academic honesty is everyone's responsibility. Therefore, please familiarize yourself with the section on academic honesty in the GRU Student Manual and GRU Academic Policy. Academic dishonesty – cheating on exams, plagiarism of the work of others, unapproved collaboration on graded work, and the like – is not tolerated. Depending on the nature and severity of the problem, a student who is guilty of any such violation may be: 1) withdrawn from the course with a grade of WF (counted as an F in the GPA); 2) given a grade of zero on the assignment; 3) given a grade of F in the course; or 4) otherwise penalized, at the discretion of the faculty member.

Make-up Policy: No make-up exams are given. If, due to extraordinary circumstances, a student misses a class when an exam is scheduled, the instructor must be notified at least a week in advance unless it is some type of emergency. A student may be required to submit documentation. If the absence is an excusable absence, the weight of the missed exam is placed onto the final exam's weight.

Instructor: Mike Dowell Office: Allgood E129

E-mail: mdowell@augusta.edu Web Page: http://spots.augusta.edu/mdowell/

Office Hours: See Web page

Preliminary Course Schedule^{*}

Week	Topics
1	Algorithm Analysis
2	Algorithm Analysis (cont)
	Abstract Data Types
3	Lists
	Linked List
	Doubly Linked List
4	Stacks
5	Queues
	Trees
6	Binary Tree
	Binary Search Tree
7	Exam # 1
8	AVL Tree
	B-Trees
9	Dictionary
	Hashing
	Separate Chaining
	Probing Hash Tables
10	Double Hashing
	Priority Queue
11	Sorting
	Insertion
12	Shell
	Heap
	Quick
13	Exam # 2
14	Graphs
	Adjacency List
15	Topological Sort
	Shortest-Path Algorithm
	Dijkstra's Algorithm
	Final Exam

^{*} Subject to change