CSCI 3170 Computer Organization

Course Description

This course is a study of computer architecture and organization. Topics range from Boolean algebra and logic design, through microprocessor construction to performance enhancements.

Prerequisites: Textbook:	CSCI 1302 Fundamentals of Digital Logic and Microcomputer Design M. Rafiquzzaman ISBN 0-471-72784-9
Grading:	Scores on the following determine your final grade:Test #125 %Test #230 %Final Exam35 %Homework/Quiz10 %No late work accepted.
Course Grade	Scale: A 92 - 100 After each exam, I adjust the grading scale if necessary. B 84 - 92 2 C 74 - 84 D 64 - 74 F 0 - 63

Attendance: You are strongly encouraged to attend class. I do not repeat lectures or provide notes. You are responsible for all class material whether or not you attend class. If you stop attending class, I have the right to withdraw you. However, withdrawing from the class is the responsibility of the student. Do not assume I will drop you from the class. If you stop attending after midterm, I will give you a WF.

Academic honesty is everyone's responsibility. Therefore, please familiarize yourself with the section on academic honesty in the GRU Student Manual and GRU Academic Policy. Academic dishonesty – cheating on exams, plagiarism of the work of others, unapproved collaboration on graded work, and the like – is not tolerated. Depending on the nature and severity of the problem, a student who is guilty of any such violation may be: 1) withdrawn from the course with a grade of WF (counted as an F in the GPA); 2) given a grade of zero on the assignment; 3) given a grade of F in the course; or 4) otherwise penalized, at the discretion of the faculty member.

Make-up Policy: No make-up exams are given. If, due to extraordinary circumstances, a student misses a class when an exam is scheduled, the instructor must be notified at least a week in advance unless it is some type of emergency. A student may be required to submit documentation. If the absence is an excusable absence, the weight of the missed exam is placed onto the final exam's weight.

Instructor:	Mike Dowell	Office:	Allgood E129
E-mail:	mdowell@gru.edu	Web Page:	http://spots.gru.edu/mdowell/
Office Hours:	See Web page		

Week	Book	Topics
1	1.5	Introduction
1	1.6	History
	2.1-2.2	Number Systems and Codes
	2.1 2.2	Conversions
2	2.5.1	Binary Arithmetic
2	2.3.1	Half Adder
	3.3	Gates
3	3.1-3.2,3.5	
5	5.1-5.2,5.5	Boolean Algebra Rules and Theorems
	2.6	Circuit Design using Truth Tables
	3.6	Sum-of-Products
	3.6	Product-of-Sums Form
4	3.7	Karnaugh Maps
		Don't Cares, Gathering Zeros
	3.8	Quine-McCluskey Algorithm
	3.9	Circuits using NAND && NOR gates
5		Time Response in Circuits
		Gate Delays
	3.5.3	Timing Hazards
	4	Combinational Logic Design
	4.5.2	Comparators
	4.5.3	Decoder
6	4.5.4	Encoder
	4.5.5 - 4.5.6	Multiplexer, Demultiplexer
	4.7	ROM
	4.8 - 9	PLD including PAL, PLA, FPGA
7	Exam # 1	
8	4.10, J.1	Hardware Description Languages
9	5	Sequential Logic
	5.1	Latches and Flip-Flops
	5.2.1	SR Latch
10	6.2.2	Clocks
	5.3	Master-Slave Flip-flop
		Edge-Trigger Flop-flops
	5.2.3 - 5	D, JK, T Flip-flop
11	5.11.1	Registers
		Shift Register
		Counters
12	5.6	Analysis of Sequential Logic Circuits
		Excitation and next-state equations
		Next-State Table and State Diagram
	5.9	Design of Sequential Logic Circuits
	5.7	Moore vs. Mealy
	5.10	Designing Counters
13	Exam # 2	
14	6.2.1	System Buses
15		Data Path
15	7.3.5	RTL
	Final Exam	
change	r mai t/sam	

Preliminary Course Outline*

*Subject to change