
MAGE: ADDITIONS TO THE AGE ALGORITHM
FOR LEARNING IN MULTI-AGENT SYSTEMS

Michael L. Dowell and Dr. Larry M. Stephens

Department of Electrical & Computer Engineering
University of South Carolina

Columbia, South Carolina 29208, USA
e-mail: Dowell@ece.scarolina.edu

Stephens@ece.scarolina.edu

ABSTRACT

This paper introduces the Modeling Action Group Estimation algorithm
(MAGE) which improves the Action Group Estimation (AGE) algorithms developed by
Weiss[4]. These algorithms allow groups of agents to learn to coordinate their actions by
adjusting estimates for individual actions and groups of actions.

1 INTRODUCTION

The performance of Multi-Agent systems is affected by how agents coordinate
their actions to achieve their goals. The Action Estimation (ACE) and Action Group
Estimation (AGE) algorithms developed by Weiss [4] address this concern by providing a
method for agents to learn to coordinate their actions. These algorithms use reinforcement
learning methods for multi-agent systems based on an action-oriented version [2,3] of
Holland's bucket brigade learning model for classifier systems [1].

2 FORMAL SPECIFICATION

The set of all agents is denoted by AG = {ag1, ... ,agn} where n ∈ N. The
environment is represented by environmental states S, T, U, ... where S = {s1, ..., sm}. An
agent can sense all or part of an environmental state with Si representing the part of the
environmental state S that agent agi senses where agi ∈ AG and Si ⊆ S. An agent may
not be able to distinguish between two different environmental states. For example, given

two different environmental states S and T, Si = Ti is possible if agent agi cannot sense the
difference between these environmental states. In addition, the combination of all agents

sensing information may not be complete since Si
i

n

=1

� = S is not required.

The allowed actions agent agi can carry out is the action potential of agi and is
denoted as APi where APi = {ai

1, ..., ai
pi} with pi equaling the number of allowed actions

for agent agi. An agent may not be able to carry out all of its actions within its action
potential for a particular environmental state. The set of actions an agent agi can carry out
in environmental state S is represented as its set of possible actions, Ai(S), where Ai(S) ⊆
APi with the number of actions being less than or equal to the number of allowed actions.

2.1 The ACE algorithm

The Action Estimation algorithm (ACE) allows each agent to learn to estimate the
goal relevance of its actions. ACE consists of a cycle of the following five steps:

1. Each agent agi senses Si from the current environmental state S where Si ⊆ S.

2. Each agent agi determines its set of possible actions, Ai(S).

3. Each agent agi computes a bid Bi
j(S) for each of its actions ai

j in Ai(S) using the
following formula:

B S
E S E S

otherwise
i
j i

j
i
j��� ��� ���

=
+ >

���� •() : ,

:

α β θ
0

(1)

An agent's estimate of the goal relevance for action ai
j is represented as Ei

j(S)
where ai

j ∈ Ai(S). The agent is willing to risk a fraction of Ei
j(S) for performing the

action. A small constant, α, the risk factor, represents this fraction. The noise term,
β, is a small random number used to introduce noise to avoid getting stuck in a local
learning minima while cycling through the algorithm. From Weiss' paper, its appears
the risk factor combined with the noise term is in the range [0,1]. To prevent useless
actions from executing, an the estimate minimum, θ, is introduced.

4. Once the agents have completed their bids, each agent announces its bid for each
action ai

j in its set of possible actions, Ai(S).

2

5. Once the agents have announced their bids, the actions to be executed are selected
and placed in the activity context represented by the set C(S). To accomplish this
task, all actions of every agent are collected into a context potential denoted by

CP(S) where CP(S) = A Si
i

n ���
=1

� and the activity context is initially empty, C(S) = ∅.

Until CP(S) is empty, the action with the highest bid is removed from CP(S) and
added to C(S). After an action is selected, any actions incompatible with it left in the
CP(S) are removed so that these actions will not be selected later. This means C(S)
⊆ CP(S). This procedure is formally defined by the following steps:

i) CP(S) = A Si
i

n ���
=1

� and C(S) = ∅

ii) until CP(S) = ∅ do
• select ai

j ∈ CP(S) with Bi
j(S) ≥ Bk

l(S) for all ak
l ∈ CP(S)

• C(S) = C(S) ∪ {ai
j}

• CP(S) = CP(S) - ({ai
j}∪{ak

l ∈ CP(S) : ak
l and ai

j are incompatible})

6. The final step allows each agent to learn by adjusting its estimates Ei
j(S) for each

selected action ai
j in C(S). It is important to realize only the estimates for selected

actions are adjusted. These estimates are increased by two different components:
• any external reward, R, is evenly distributed,
• the sum of the bids for all actions in the activity context is evenly

distributed.

Each selected action receives an equal increase based upon this method. In addition,
each estimate is decreased by the amount of its bid. Formally, this is defined in the
following formula where Ei

j(S) is ai
j's estimate and Bi

j(S) is ai
j's bid. The other two

terms equal the same amount for each ai
j within the activity context.

E S E S B S
R

C S

B S

C Si
j

i
j

i
j

i
j

a Ci
j� � ��� � � ���

���
���= − + + ∈

∑

(2)

The external reward, R, and the sum of the individual bids is divided by the number
of actions in the activity context, |C(S)|. This procedure does not require each agent
to perform an action.

3

2.2 The AGE algorithm

The Action Group Estimation (AGE) algorithm has the same basic cycle as the
ACE algorithm with one important difference. An agent's action becomes part of an
activity context and is not considered independently. Therefore, the bids are not for
individual actions but are for groups of actions. While an agent's estimate of goal
relevance for an action is still based upon knowledge of the environmental state Si, it now
depends upon the activity context C. Therefore, the estimate of the goal relevance of an
action ai

j includes the additional activity context term and is represented as Ei
j(C). With

this addition, bids for each action now depend upon actions of the other agents; and, thus,
bids are for an activity context and not for a single action.

To determine the activity context with the highest bid, all activity contexts must be
generated. The set of activity contexts for environmental state S is represented by the
possible activity context, PAC(S), where PAC(S) = {C1(S), C2(S), ..., Cr(S)} with r
equaling the number of activity contexts. Generating a PAC(S) requires each agent to
announce its every action ai

j where ai
j∈ Ai(S). The PAC(S) is the cross product of each

agent's set of possible actions. Any activity contexts with incompatible pairs of actions are
not added to PAC(S). Formally, this set is determined by the following:

PAC S A A A a a C S a and a are compatiblen k
l

p
q

k
l

p
q

� � ���
= × × ∀ ∈{ ... :(, :)}1 2 (3)

This modification changes the third step of the ACE algorithm. Each agent agi
computes a bid Bi

j(Ck(S)) for each of its actions ai
j in every activity context Ck(S) in its

PAC(S). Each bid is calculated as follows:

B C S
E C E C

otherwise
i
j

k
i

j
k i

j
k

���� � � � � �
= + >
���� �
�

•() : ,

:

α β θ(S) (S)

0
 (4)

where Ei
j(Ck(S)) is agi's estimate of the goal relevance of action ai

j based upon S and
Ck(S). The composite bid Bk(Ck(S)) for an activity context, Ck(S), is the sum of bids for
each action in Ck(S) and is defined as follows:

B C S B Ck k i
j

k
a Ci

j
()

� � � �
= ∑

∈
(S)

(S)
 (5)

The fifth step is simplified to select the activity context in the PAC(S) with the
highest bid and all the actions in the activity context are executed.

4

The final step changes such that each bid and estimate includes the additional
activity context term and are represented as Bi

j(C(S))and Ei
j(C(S)). The estimates are

adjusted according to the same method:

E C E C B C
R

C

B S

Ci
j

i
j

i
j C(S) (S) (S)

(S) (S)

� � � � � � ���
= − + + (6)

3 THE MAGE ALGORITHM

A major drawback of the AGE algorithm is the overhead for generating large
numbers of activity contexts. Part of this overhead is in communication costs. Initially,
each agent agi announces its every action aij in Ai(S). After the bids are computed, each
agent announces its bids. In the ACE algorithm, there is one bid for each action, but in the
AGE algorithm, each agent has one bid for each activity context C(S) in its PAC(S).

The number of activity contexts C(S) increases rapidly. This number, PAC S
� �

, is the
product of sums of each agent's actions and is bounded by:

PAC S A Si
i

n��� ���
≤

=
∏

1
 (7)

The large number of activity contexts leads not only to a large number of bid
announcements from each agent but to considerable computing to determine the bids since
there is overhead for each activity context in this cycle. Each agent generates every
activity context and tests each for validity. Each valid activity context has a bid Bi

j(C(S))
generated by each agent. These bids, when combined, produce a composite bid Bk(Ck(S)).
Finally, the activity context with the highest composite bid is selected from PAC(S).

For example, three agents, each with three actions, will have twenty-seven activity
contexts to be considered. Not all of these will be valid, but each is generated to determine
if it is valid. If an environment, such as the blocks world, allows only a few valid activity
contexts, the overhead will be less since only valid activity contexts are used in the rest of
the cycle. Each agent announces each of its three actions for a total of nine action
announcements. After these announcements, each agent generates and tests all twenty-
seven activity contexts. Only one of these twenty-seven is selected. The overhead for the
twenty-six activity contexts not selected is wasted. In addition, only three of the nine
action announcements are required since an agent executes only one action at a time.

To improve the AGE algorithm, the number of activity contexts considered must be
kept to a minimum. This is accomplished by allowing each agent to model the other
agents. Providing the ability to predict the probable actions of other agents enables an

5

agent to consider only the best activity contexts and thus compute bids for fewer activity
contexts. This method avoids the overhead for activity contexts not selected.

The modeling information is represented by a model structure. Each agent has a
model structure that contains estimates of the other agent's likely actions for each
environmental state. The model structure is defined as a set of tuples given by:

M

S ag a ME S a S ag a ME S a

V ag a ME V a V ag a ME V a

i

i j j
k

i j
k

i m m
n

i m
n

i v v
w

i v
w

i x x
y

i x
y

=

�
� ��
��
�

�

���
� ��

, , , , ,. . ., , , , ,

. . .,

, , , , ,. . ., , , , ,

(8)

where Mi is the model structure for agent agi, and Si to Vi are the environmental states
sensed by agi during problem-solving. Each tuple contains an agent agj, its action aj

k, and
its modeling estimate, ME(Si,aj

k) where aj
k is the kth action of agent agj. The modeling

estimate is an estimate of another agent's likelihood of taking a specific action based upon
the environmental state Si. Initially, each agent's model structure is empty but as new
environmental states are encountered, these are added to an agent's model structure by
observing the actions of the other agents. The addition of the modeling aspect to the AGE
algorithm is termed the Modeling Action Group Estimation (MAGE) algorithm. The
MAGE algorithm consists of a cycle of the following steps:

1. Each agent agi senses Si from the current environmental state S where Si ⊆ S.

2. Each agent agi determines its set of possible actions, Ai(S).

3. Using the information in Mi, each agent agi estimates the actions other agents select
for the current environmental state S. Each agent collects these actions in a set of
modeled actions, MAi(S), where MAi(S) = {aj

1, ..., aj
uj} with uj ≤ qj with qj

equaling the number of actions for agent agj in S.

4. Each agent's set of modeled actions are used to generate a modeled context

potential, denoted by MCP(S) where MCP(S) = MA Si
i

n � �
=1

� . The number of actions

within MCP(S) is less than or equal to the number of actions within the context
potential, CP(S). This is important because this number determines how many
activity contexts are generated for the bidding process.

5. The actions in the MCP(S) are used to generate the modeled possible activity
context, MPAC(S), where MPAC(S) = {C1(S), C2(S), ..., Ct(S)}. Comparing t, the

6

number of activity contexts within MPAC(S), with r, the number of activity contexts
in PAC(S), shows that t ≤ r. Formally, the modeled possible activity context is given
by:

MPAC S MPAC S MCP S a a C S a and a are compatiblek
l

p
q

k
l

p
q���

= ⊆ ∀ ∈{ () ():(, ():)} (9)

There can be one or more activity contexts in an agent's MPAC(S) since the agent
may not be able to distinguish between different environmental states such as T and
V. In this event, an agent agi would only sense a single environmental state Ti from
T and V. Another agent agj may take different actions for these different
environmental states and thus the modeling estimates of agi for agj would predict
two actions for environmental state Ti.

6. The final step allows agents to learn by adjusting modeling estimates, ME(Si,ajk),
for each of the other agent's actions If the current environmental state has not been
encountered, a new set of tuples is added to an agent's modeling structure. The set
has the following form:

S ag a ME S a S ag a ME S ai j j
k

i j
k

i m m
n

i m
n, , , , ,. . ., , , , ,

� �
(10)

A tuple for each of the other agents is added to represent its selected action. The
tuple has the following form:

S ag a ME S ai j j
k

i j
k, , , , (11)

where aj
k is the action taken by agent agj, and ME(Sj,aj

k) is the modeling estimate
for this action. If Sj has been encountered, existing modeling estimates are adjusted.

4 MAGE EXAMPLES

The task domain used for the examples is the blocks world. This is the same task
domain chosen by Weiss [28] and will allow for a direct comparison of the AGE and
MAGE algorithms. The problem is to transform an initial configuration of blocks into a
goal configuration. The goal configuration is shown in Figure 1.

7

A

B

E

D

C

Figure 1: The Goal Configuration

Each agent has limited motor capabilities and is responsible for moving one block.
For example, agent ag1 is responsible for moving block A, agent ag2 is responsible for
moving block B, etc. In addition, agent ag1 has only two allowed actions: moving block
A on top of block B, represented by put(A,B), or moving block A on the table, put(A,⊥).
A precondition for executing a put action is the block to be moved must be clear and the
block, if any, used as a support is also clear. A block is clear when there are no other
blocks on top of it. Each agent's responsibilities and allowed actions are shown in Table 1.

Agent Block
Assignment

Allowed
Actions

ag1 A put(A,B), put(A,⊥)
ag2 B put(B,C), put(B,D)
ag3 C put(C,D), put(C,⊥)
ag4 D put(D,C), put(D,E)
ag5 E put(E,B), put(E,C), put(E,⊥)

Table 1: Assignments and Possible Actions

Each agent also has limited sensing capabilities. An agent senses only information
relevant to its actions and, thus, has only local information about the environment. Each
agent senses information about blocks that are part of its actions. For example, agent ag1
senses information about blocks A and B since these are the only blocks that are part of its
actions. The information gathered about an assigned block is whether the block's top is
clear and the block's support, i.e., what the block is positioned above. More formally, each
agent, for each of its actions put(x,y), senses information about z where z ∈ {x,y}. The
information sensed is whether z is clear and the block on which z is positioned. Each
agent's sensing responsibilities are shown in Table 2.

8

Agent Blocks Sensed
ag1 A, B
ag2 B, C, D
ag3 C, D
ag4 C, D, E
ag5 B, C, E

Table 2: Agent Sensing Capabilities

Initially, the model structure, Mi, of each agent agi is empty. As problems are
solved, each new environmental state is added to each agent's model structure. The first
example starts with the blocks in the configuration shown in Figure 2.

A

B

EDC

Figure 2: Configuration for Example 1

Each agent's actions and its environmental state sensed are shown in Table 3. An
agent's possible actions are the actions an agent can execute in a given environmental
state. The On column represents the support for each agent's blocks while the Clear
column represents whether the top of each agent's block is clear. In the Possible Actions
column, a Null action is also represented since an agent can chose to do nothing for a
given environmental state. The information shown in Table 3 is the result of executing
steps 1 and 2 of the MAGE algorithm.

Agent Possible Actions Env. State On Clear
ag1 put(A,B), Null S1 A⊥, BD A, B
ag2 put(B,C), Null S2 BD, C⊥, D⊥ B, C
ag3 Null S3 C⊥, D⊥ C
ag4 Null S4 C⊥, D⊥, E⊥ C, E
ag5 put(E,B), put(E,C), Null S5 BD, C⊥, E⊥ B, C, E

Table 3: Environment States and Possible Actions for Example 1

Since no modeling information is initially in the model structures, all compatible
activity contexts are generated and added to the set of possible activity contexts, PAC(S).

9

Each agent agi computes a bid Bi
j(Ck(S)) for each activity context, Ck(S), in its PAC(S).

A PAC(S), without Null actions, is shown below.

PAC(S) = { {put(A,B)}, {put(B,C)}, {put(E,B)}, {put(E,C)}, {put(A,B), put(E,C)}}

Each agent computes five bids, one for each Ck(S) in the PAC(S). The activity
context selected for execution will be C2(S), {put(B,C)}, since this action will transform
the configuration into a configuration that is closer to the goal configuration.

Since this is the first problem to be solved, each agent's model structure is empty.
Step 6 of the algorithm will add the current environmental state, Si, to each agent's model
structure. Each agent's model structure, after sensing the environment and selecting the
action put(B,C), will be:

M1={〈S1, ag2, put(B,C),1〉,〈S1, ag3, Null, 1〉, 〈S1, ag4, Null, 1〉, 〈S1, ag5, Null, 1〉}
M2={〈S2, ag1, Null, 1〉,〈S2, ag3, Null, 1〉, 〈S2, ag4, Null, 1〉, 〈S2, ag5, Null, 1〉}
M3={〈S3, ag1, Null, 1〉,〈S3, ag2, put(B,C),1〉, 〈S3, ag4, Null, 1〉, 〈S3, ag5, Null, 1〉}
M4={〈S4, ag1, Null, 1〉,〈S4, ag2, put(B,C),1〉, 〈S4, ag3, Null, 1〉, 〈S4, ag5, Null, 1〉}
M5={〈S5, ag1, Null, 1〉,〈S5, ag2, put(B,C),1〉, 〈S5, ag3, Null, 1〉, 〈S5, ag4, Null, 1〉}

where Si is the environmental state sensed by agent agi. After agent ag2 executes the
put(B,C) action, the block's configuration is as shown in Figure 3.

A

B

EDC

Figure 3: Second Configuration for Example 1

Given the second configuration, each agent's actions and environmental state
sensed are shown in Table 4.

Agent Possible Actions Env. State On Clear
ag1 put(A,B), Null T1 A⊥, BC A, B
ag2 put(B,D), Null T2 BC, C⊥, D⊥ B, D
ag3 Null T3 C⊥, D⊥ D
ag4 put(D,E), Null T4 C⊥, D⊥, E⊥ D, E
ag5 put(E,B), Null T5 BC, C⊥, E⊥ B, E

Table 4: Environment States and Actions for Second Configuration of Example 1

10

A search of each agent's modeling structure results in no matches, therefore, all
compatible activity contexts are generated and added to a reinitialized possible activity
context, PAC(S). Each agent then computes a bid as shown before. The PAC(S), without
Null actions, for the second configuration is shown below.

PAC(S) = { {put(A,B)}, {put(B,D)} {put(D,E)}, {put(E,B)}, {put(A,B), put(D,E)} }

The number of activity contexts in a PAC(S) is again five, and each agent
computes and broadcasts five bids. The activity context selected will be C5(S), {put(A,B),
put(D,E)}, since this action transforms the configuration into the goal configuration.

Step 6 adds Ti to each agent's modeling structure since it does not match Si. The
modeling structure of each agent, after selecting C5(S), is shown below:

M1={〈S1,...},〈T1,ag2,Null,1〉, 〈T1, ag3, Null, 1〉, 〈T1,ag4,put(D,E),1〉, 〈T1,ag5, Null,1〉}
M2={〈S2,...},〈T2,ag1,put(A,B),1〉,〈T2,ag3,Null,1〉,〈T2,ag4,put(D,E),1〉, 〈T2,ag5, Null,1〉}
M3={〈S3,...},〈T3,ag1,put(A,B),1〉,〈T3,ag2,Null,1〉,〈T3,ag4,put(D,E),1〉, 〈T3,ag5, Null,1〉}
M4={〈S4,...},〈T4,ag1,put(A,B),1〉,〈T4,ag2,Null,1〉,〈T4, ag3, Null, 1〉, 〈T4,ag5, Null,1〉}
M5={〈S5,...},〈T5,ag1,put(A,B),1〉,〈T5,ag2,Null,1〉,〈T5, ag3, Null, 1〉, 〈T5,ag4, put(D,E),1〉}

The second example starts with the blocks as shown in Figure 4. The activity
context selected is {put(C,⊥)} and the resulting configuration is shown in Figure 5. The
activity context selected for Figure 5 is {put(B,C)}.

A

B

ED

C

Figure 4: Initial Configuration for Example 2

A

B

EDC

Figure 5: Second Configuration for Example 2

After both actions are executed, the configuration is the same as shown in Figure
3. The AGE algorithm will repeat the same series of steps including generating bids for all
five activity contexts. However, an agent utilizing the MAGE algorithm matches this
environmental state with the environmental state of the first problem. Therefore, each
agent has a model of the other agents and can predict the actions of the other agents. An

11

agent generates only the most likely activity contexts and is not forced to generate all
activity contexts for this configuration. For example, agent ag2 matches the current
environmental state with T2, stored in its modeling structure as shown below.

M2={〈S2,...},〈T2,ag1,put(A,B),1〉,〈T2,ag3,Null,1〉,〈T2,ag4,put(D,E),1〉, 〈T2,ag5, Null,1〉}

Agent ag2 predicts the other agents will select these same actions in the given
environmental state. Given these constraints, agent ag2 generates only activity contexts
that include the predicted actions. In this case, there is only one action, Null, for agent ag2
to select and only one activity context is generated. Therefore, using the MAGE
algorithm, agent ag2 generates, computes, and announces a single bid instead of the five
bids needed by the AGE algorithm. Each of the other agents will follow the same steps.

The type of learning demonstrated is rote learning, which requires the learning
system to do the least amount of effort. In this context, the MAGE algorithm is
memorizing the previous solution and recalling this information. The benefit of this
learning is the time gained by each agent in avoiding the computation and communication
for the extra four bids. The first time the problem is encountered, each agent announces
five bids for a total of twenty-five messages. On subsequent encounters, each agent will
announce only one bid for a total of five messages.

The MAGE algorithm also has more complicated learning strategies. With the
previous examples, the MAGE algorithm matched the entire environmental state with
previously stored environmental states. But, in this example, each agent senses a slightly
different environmental state from the previous examples and, therefore, matches only part
of the environmental state with part of the previously stored environmental states. To
clarify the partial matching process, only agent ag4 is modeled for this example. The
partial environmental state used for matching in this example is from Table 4 and is shown
in Table 5. The information shown in Table 5 is each agent's model for agent ag4. The
information for agent ag4 is omitted since an agent does not model itself; an agent only
models other agents. Since blocks D and E are the only blocks involved in the put(D,E)
action, only information sensed for these blocks will be shown in the table. In addition, the
information for agent ag1 is also omitted since it cannot sense any information about the
blocks, D and E, involved in the action and, thus, will never have enough information to
accurately model the actions agent ag4 takes for any environmental state.

Agent Env. State On Clear
ag2 T2 D⊥ D
ag3 T3 D⊥ D
ag5 T5 E⊥ E

Table 5: Environmental States from Table 4

12

Given the configuration shown in Figure 6, each agent's actions and environmental
state sensed are shown in Table 6.

A

B

EDC

Figure 6: Configuration for Example 3

Agent Possible Actions Env. State On Clear
ag1 Null U1 A⊥, BA B
ag2 put(B,C), put(B,D), Null U2 BA, C⊥, D⊥ B, C, D
ag3 put(C,D), Null U3 C⊥, D⊥ C, D
ag4 put(D,C), put(D,E), Null U4 C⊥, D⊥, E⊥ C, D, E
ag5 put(E,B), put(E,C), Null U5 BA, C⊥, , E⊥ B, C, E

Table 6: Environmental States and Possible Actions for Figure 6

Using the AGE algorithm, each agent generates all compatible activity contexts
and adds them to its possible activity context, PAC(S). The PAC(S), without Null actions,
for this configuration is shown below. The number of possible activity contexts, C(S),
within the PAC(S) is eleven; thus, each agent computes and broadcasts eleven bids. The
activity context selected for execution will be C8(S), {put(B,C), put(D,E)}, since this
selection transforms the configuration closer to the goal configuration than any of the
other selections.

PAC(S) = { {put(B,C)}, {put(B,D)}, {put(C,D)}, {put(D,C)}, {put(D,E)},
 {put(E,B)}, {put(E,C)}, {put(B,C), put(D,E)}, {put(B,D), put(E,C)},
 {put(C,D), put(E,B)}, {put(D,C), put(E,B)}

Using the MAGE algorithm, each agent agi first attempts to match the
environmental state it senses, Ui, with a previous environmental state stored in its
modeling structure, Mi. While there are no exact matches with the complete
environmental state sensed by each agent, there are matches when considering only the
information sensed for blocks D and E. To clarify this, only the information sensed for
blocks D and E is shown in Table 7.

13

Agent Env. State On Clear
ag2 U2 D⊥ D
ag3 U3 D⊥ D
ag5 U5 E⊥ E

Table 7: Environmental States of Blocks D and E for Figure 6

Each agent, using this partial environmental state, can now match Ui with Ti from
Table 5. This means each of the other agents selects the tuple, 〈T2,ag4,put(D,E),1〉, from
its modeling structure Mi and selects put(D,E) as the most likely action agent ag4 will
select. This information reduces the size of the MPAC(S), MAGE's version of the PAC(S),
to two activity contexts, since only two contain the put(D,E) action.

MPAC(S) = { {put(D,E)}, {put(B,C), put(D,E)} }

In this example, the learning algorithm must search the model structures for a
partial match and recall the relevant tuple from previous problem-solving experiences. The
benefit of this is the time gained by avoiding the extra computation and communication
required for the extra nine bids by each agent. The first time the problem is encountered,
each agent announces eleven bids for a total of fifty-five messages being broadcast. On
subsequent encounters, each agent broadcasts only two bids for a total of ten messages.

The final example illustrates learning that requires more inferencing than the
previous learning strategies. Learning from examples requires the system to induce a
general concept description from examples. This example learns a concept description
from two of the previous examples and matches this description with an environmental
state. It involves modeling agent ag2's actions as the other agents learn under what
conditions agent ag2 selects the put(B,C) action. In the first example, agent ag2 selected
put(B,C) when the other agents sensed the environmental states shown in Table 8. The
concept description is learned by agents ag1 and ag5 so only their information is shown for
Table 8. Since blocks B and C are the only blocks involved in the put(B,C) action, only
information sensed for these blocks is shown in the table.

Agent Env. State On Clear
ag1 S1 BD B
ag5 S5 BD, C⊥ B, C

Table 8: Environmental States of Blocks B and C for Figure 2

14

In the second example, agent ag2 selected put(B,C) when the other agents sensed
the environmental states shown in Table 9, from the configuration of blocks shown in
Figure 5. Once again, the information for agents ag2, ag3, and ag4 is omitted and only
information sensed for blocks B and C are shown in the table.

Agent Env. State On Clear
ag1 V1 BE B
ag5 V5 BE, C⊥ B, C

Table 9: Environmental States of Blocks B and C for Figure 5

Agents ag1 and ag5 sense differences between the two examples. In the first
example, B is on top of D while in the second example B is on top of E. Therefore, a
partial match does not work. Each agent's learning system must induce a concept
description covering both environmental states. At this point, the learning system has a
choice in determining how far to generalize the two examples. It can take a more
conservative approach and describe the concept as B on top of only blocks D or E. In this
case, a partial match would require D or E and would not allow any other blocks to
match. A more liberal approach removes this restriction and describes the concept as B on
top of any other block. This approach is taken in MAGE and the resulting concept
description for each agent for this example is shown in Table 10.

Agent Env. State On Clear
ag1 SV1 B* B
ag5 SV5 B*, C⊥ B, C

Table 10: Concept Description for Modeling ag2 selecting put(B,C)

where * represents a variable or wild card that matches any of the other blocks. This new,
partial environmental state, SVi, is added to the modeling structures of agents ag1 and ag5.

This new concept is used for helping to solve the configuration of blocks for
example 3, shown in Figure 6. Using the partial matching discussed earlier, there are still
two activity contexts in the MPAC(S). Each agent's actions and environmental states
sensed are shown in Table 6. The information for agent ag4 is omitted since it is the agent
being modeled. Only information for blocks B and C are shown for the other agents.

15

Agent Env. State On Clear
ag1 W1 BA B
ag3 W4 C⊥ C
ag4 W5 C⊥ C
ag5 W3 BA, C⊥ B, C

Table 11: Environmental States of Block B and C for Figure 6

Agents ag3 and ag4 make partial matches and select put(B,C) as the most likely
selection of agent ag2. In addition, agents ag1 and ag5 will match BA from the
environmental state with B* from their concept descriptions and, thus, also select
put(B,C) as ag2's most likely selection. This means each agent will select C2(S),
{put(B,C), put(D,E)}, from the MPAC(S) since it is the only activity context to satisfy the
constraints from the partial and concept matches.

5 CONCLUSION

This paper introduced the Modeling Action Group Estimation algorithm (MAGE)
which improves the Action Group Estimation (AGE) algorithms developed by Weiss[4].
These algorithms allow groups of agents to learn to coordinate their actions by adjusting
estimates for individual actions and groups of actions. The MAGE algorithm introduces a
modeling structure that reduces the number of activity contexts and bids needed and thus
reduces the overhead required to select the activity context to be executed for each cycle
in the problem solving process.

REFERENCES

[1] Holland, J.H., "Properties of the bucket brigade", Proceedings of the First
International Conference on Genetic Algorithms and Their Applications, J.J.
Grefenstette (Ed.), 1985, pp. 1-7

[2] Weiss, G., "The action-oriented bucket brigade", Technical Report FKI-156-91,
Institut für Informatik, Technische Universität München, 1991

[3] Weiss, G., "Learning the Goal Relevance of Actions in Classifier Systems",
Proceedings of the 10th European Conference on Artificial Intelligence, B. Neuman
(Ed.), Wiley, 1992, pp. 430-434

[4] Weiss, Gerhard, "Learning to Coordinate Actions in Multi-Agent Systems", IJCAI-93,
Chambery, France, August 1993, pp. 311-316

16

[5] Singh, Munidar P., Michael N. Huhns and Larry M. Stephens, "Declarative
Representations of Multiagent Systems", IEEE Transactions on Knowledge and Data
Engineering, Vol. 5, No. 5, October 1993, pp. 721-739

[6] Brazdil, P. and M Gams, S. Sian, L. Torgo, W. van de Velde, "Learning in Distributed
Systems and Multi-Agent Environments", Machine Learning - EWSL-91, Proceedings
of the European Workshop Session on Machine Learning, Porto, Portugal, Springer-
Verlag, March 6-8,1991, pp. 412-423

[7] Brazdil, P. and S. Muggleton, "Learning to Relate Terms in a Multiple Agent
Environment", Machine Learning - EWSL-91, Proceedings of the European
Workshop Session on Machine Learning, Porto, Portugal, Springer-Verlag, March 6-
8,1991, pp.424-439

[8] Sian, Sati S., "Extending Learning to Multiple Agents: Issues and a Model for Multi-
Agent Machine Learning", Machine Learning - EWSL-91, Proceedings of the
European Workshop Session on Machine Learning, Porto, Portugal, Springer-Verlag,
March 6-8,1991, pp.440-456

[9] Dowell, Michael L. and Ronald D. Bonnell, "Learning for Distributed Artificial
Intelligence Systems", Proceedings of the Twenty-Third Southeastern Symposium on
System Theory, Robert Werner (Ed.), 1991 pp. 218-221

17

