
Determining Improved Values for
Coordination and Communication
Parameters in Multiagent Systems:

A Case Study

Michael L. Dowell
Department of Math and Computer Science

Georgia Southern University
Statesboro, GA 30460

dowell@gsu.cs.gasou.edu

and

Larry M. Stephens
Department of Electrical & Computer Engineering

University of South Carolina
Columbia, South Carolina 29208

stephens@sc.edu

ABSTRACT

This paper introduces new coordination parameters and experimental results for the
multiple-team pursuit problem. Our results confirm that reducing the costs of
coordination increases the effectiveness of a multiagent system; however, even in simple
problem domains, determining the best coordination strategies may require extensive
experimentation. A simple and flexible performance metric is defined to assess the effect
of changes in coordination strategy. This paper presents results from a series of
experimental runs, each of which help to determine improved values for parameters that
influence coordination strategies. Several of the newly defined parameters are useful for
other multiagent systems. The process presented in this paper can be the basis for a
machine-learning algorithm for improving the coordination of groups of agents for
distributed problem solving.

1

1 Introduction

Improving the performance of multiagent systems is a complex and time-consuming

process. As these systems become larger and more sophisticated, performance becomes

dependent upon an increasing number of parameters. Designers and programmers

typically use intuition or guesswork in determining these parameters, some of which

govern when and how agents interact. This paper examines optimizing the performance

of a multiagent system by experimenting with coordination* parameters. A simple

coordination strategy is used among a group of agents solving a problem: one team of

agents determines when to interact with another team to exchange roles in a pursuit game.

The values of coordination parameters determine if and when agents should attempt to

interact given that a goal is to reduce the time required to solve the problem. However,

the act of attempting to interact itself has a cost, and the system must balance the

frequency of attempts with the benefits of successfully cooperating.

The experimental results we obtained suggest how to automate the parameter-

adjustment process to find improved values for coordination parameters based on given

performance metrics. In this sense, the experiments—although carried out by a person

rather than a machine—are a form of organization learning for multiagent systems [3],

[4]. Organization learning is different from other forms of multiagent learning (such as

those described in [8], [11], [15], [16]) in that the learning is about how one group of

* In the introduction to [2], Bond and Gasser view cooperation as a specialization of the more general
concept of coordination: a property of interaction among some set of the agents performing some collective
activity. In [2] the term “cooperation” is simply a special case of coordination among nonantagonistic
agents; we choose to use the more general concept for this paper.

2

agents interacts effectively with another group; the learning in [8], [11], [15] involves

individual learning by agents in a single group.

2 Multiple Team Pursuit

2.1 Pursuit Problem Background

The pursuit game is a well-known test problem for the field of distributed artificial

intelligence [1], [5-7], [9-10], [12-14]. While different researchers have used different

versions of the game, the overall structure of the problem has remained the same. The

game takes place on a finite grid of squares that can be empty or occupied by an agent.

There are two types of agents within the system: prey agents and predator agents. During

each turn, an agent can remain in its current location or move up, down, left, or right. A

collision occurs when two or more agents attempt to move to the same location.

Collisions are resolved by randomly selecting one of the agents to occupy the disputed

location and blocking the other agents’ moves.

The goal of the pursuit problem is to surround a prey agent with four predator agents.

A group of predators must occupy the gird locations above, below, to the left and to the

right of the prey agent, as shown in Fig. 1. Typically, the game starts with four predator

agents and one prey agent in a random initial configuration and continues until the

predator agents capture the prey agent.

3

Prey Agent

Predator

Fig. 1: Capture Configuration

Recent work [16] has introduced two other types of goals for the predator agents.

The first involves “killing” the prey agent by having a predator occupy the same grid

location. This goal is much easier to achieve than surrounding the prey since it can be

accomplished by only one agent. The second type of goal, called “surrounding” in [16],

traps the prey in a corner of the grid and requires only two agents. Cornering an agent is

more difficult than killing an agent but is not as difficult as surrounding an agent. Our

research permits neither killing nor cornering; in all of our experiments, the four predator

agents must completely surround the prey. In the case of cornering, our predator agents

back away from the prey and wait for it to move out of the corner before trying to

surround it. This choice makes capturing prey more difficult than cornering in [16]

because the leader of the predators has to determine that the prey is in the corner and

instruct all the team members to retreat.

4

2.2 Multiple Team Pursuit Environment

The multiple team pursuit problem (MTP) is conceptually motivated by [5], which

describes a testbed called MICE—the Michigan Intelligent Coordination Experiment—

and presents variations of the standard scenario. The most common scenario described in

[5] involves two prey agents and six predator agents. The prey agents' goal is to move

across the grid to reach a "safe area" before the predators capture them.

The multiple team pursuit problem defined in our paper differs from [5] by using

three teams of predators attempting to capture three prey agents. A team of predators has

four participating agents and seeks to capture an assigned prey agent, which is assumed to

move at random for simplicity; a MTP configuration is shown in Fig. 2. Unlike some

other research involving the pursuit game, our research is not concerned with how the

individuals in a single team perform or interact with other team members. The main

focus of the MTP problem is the coordination between the teams; in particular, two teams

might agree to exchange assigned prey agents because each team is better located to

capture the other’s prey.

5

Team I

Team II

Team III

Team

Fig. 2: Typical MTP Configuration

Each team has a fixed set of predator agents that work in capturing an assigned prey

agent. In our experiments, no team member may switch to a different team, and no

communication between teams is done for the purpose of a single team capturing its prey.

2.2.1 Control Strategy for Capture

The strategy used by each team is called the controlling agent strategy [7], [10], [14].

In reference [7] the area around a prey agent was partitioned into four quadrants by using

diagonal lines that cross at the prey agent’s location. Each predator agent then tries to

occupy a location within its assigned quadrant to attain a Lieb configuration. Once the

predator agents have attained the Lieb configuration, they use a set of “Lieb rules” that

determines how each of the predator agents will move to capture the prey.

6

In our study, each team has one controlling agent, and the other three agents are

subordinate. The controlling agent directs each of the predator agents (including itself) to

its assigned capture regions. Once each predator agent is in its assigned capture region,

the controlling agent directs the group to converge on the prey agent using the Lieb rules.

2.2.2 Coordination and Communication States

The focus of this paper is coordination between teams. The controlling agent of one

team is permitted to communicate with the controlling agents of the other teams. None of

the subordinate team members communicate with any agent from another team. The

coordination in these experiments consists of selecting appropriate prey agents for each of

the teams. While the experiments used three teams, the algorithm is designed to work

with a larger number of teams.

Initially, each team is assigned a prey agent. Based on the relative location of

assigned prey during the pursuit, two teams may agree to coordinate their efforts by

swapping their assigned prey agents. The transition diagram shown in Fig. 3 illustrates

the different states and communications that lead to switching prey agents between two

teams.

7

0 1 2

3 4

Send

SendREQ*
REQ*

SWAP*
Rec

Rec
Rec

SWAP
Rec
CONFIRM

CONFIRM

Rec
CANCEL

Send
CANCEL

start
Send
REQ-SWAP

5

Fig. 3. Transition Diagram for Swapping Prey

The starting state of the transition diagram is state 0. In this state, a controlling agent

listens for messages requesting swaps (REQ) from other teams or it can send a message

requesting a swap (REQ-SWAP). If a controlling agent sends a REQ-SWAP message, it

then moves to state 1 and sets a flag indicating the REQ-SWAP message has been sent.

The decision to send a REQ-SWAP message is based on ranking all of the prey agents

with respect to their distance from each team member. If the nearest prey agent is not the

assigned prey agent, the controlling agent broadcasts a REQ-SWAP message.

In state 0 or 1, if the controlling agent receives a REQ message from another team, it

evaluates the message to determine if there is an acceptable swap, denoted as a REQ*

message. An acceptable swap message is one in which the prey agent being offered in the

swap message has a better ranking than the currently assigned prey agent. If the REQ*

message is received, the agent enters state 3.

In state 1, the controlling agent is listening for a reply to its own request to swap

message (REQ-SWAP). If a reply message (SWAP) is received, the controlling agent

8

evaluates the message to determine if it is an acceptable swap (SWAP*). If the SWAP

message is not acceptable, the controlling agent sends the other team a CANCEL message

informing them the swap is not acceptable and then waits in state 1 for another reply. If

the SWAP message is acceptable, the controlling agent enters state 2.

In state 2, the controlling agent sends a CONFIRM message to the offering team and

then enters state 5. If the controlling agent receives other SWAP messages while in state

5, it sends a CANCEL message to any team sending a SWAP message.

A controlling agent may also reach state 5 by replying to another team’s REQ-SWAP

message. After receiving an acceptable request to swap message (REQ*), the controlling

agent enters state 3. In this state, the controlling agent sends a SWAP message to the

other team and enters state 4.

From state 4, a controlling agent waits for a CONFIRM or CANCEL message from

other teams. If a CONFIRM message is received, the controlling agent enters state 5. If a

CANCEL message is received, the controlling agent returns to state 0 where it transitions

to state 1 if it has already sent a REQ-SWAP message.

State 5 is the terminal node. In this state, the two controlling agents swap prey

assignments and end their current coordination cycle. If any SWAP messages are

received, a CANCEL message is immediately returned.

Most coordination cycles do not end in this manner. For most cycles, the controlling

agent enters state 1 or state 4 and waits a user-specified amount of simulated time before

timing-out and ending the current coordination cycle. This timing-out behavior is

required when coordination is not needed for the current problem configuration. Timing-

9

out is done only in state 1 or 4 since states 2 and 3 are temporary states the agent moves

through without waiting.

3.0 Experimental Results

The MTP prototype is implemented using the MICE testbed [5] with some minor

modifications to improve performance. The MTP prototype was used to analyze its

performance with several different starting configurations. The starting configurations

for the results presented in this paper use the configuration shown in Fig. 4. In this

configuration, three prey agents are randomly distributed within the shaded area in the

center of the grid. This random distribution of prey ensures that a given team will, on

average, have no advantage over the others. However, to make valid comparisons

between different trials, we restricted the placement of the predator agents. For each trial,

each pursuit team is placed in a different grid corner with its team members grouped

together as closely as possible. This starting configuration ensures some randomness in

starting configurations; however, the number of runs in a given experiment makes it

possible to obtain valid performance comparisons for different values of the coordination

parameters.

Each team is initially assigned a specific prey that is placed at random within the

center region of the grid. The assigned prey can be exchanged by teams cooperating with

each other. The controlling agents of each team communicate to exchange prey agents

only during coordination cycles. At other times, the controlling agent directs its team

members in capturing the assigned prey agent.

10

Team I

Team II

Team III

Prey Starting Area

Fig. 4: Starting Configuration

The MICE testbed uses a simulated clock to keep track of time. Each clock tick is

denoted as ∆t. The amount of time required for an agent to move or for a message to be

transmitted between agents is user definable. For this study, the total simulated time for a

message to be sent by one agent and received by another agent is assumed to be 3

simulated time units: ∆t to send a message, ∆t for delay in the communication channel,

and ∆t for message receipt. The time allowed for an agent “move” (the total perceive,

reason, and act cycle) is set to 100∆t, an amount of time much greater than the time spent

in communicating with another agent. Thus, the total time for a message to be sent and

received is 3 ∆t, which is only 3% of the move time. These values were selected to

represent the domain of naval vessels pursuing enemy submarines—a domain in which

11

communication time is much smaller than movement time. Times can be changed to suit

other domain applications.

3.1 Coordination Parameters and a Performance Metric

Coordination costs are also measured in simulated time units. In most coordination

cycles, the teams do not switch prey agents but run out of the allotted interaction time. If

teams can minimize the number of non-productive coordination cycles, they save time

and improve their performance. For the experiments described below, the teams’

cooperative behavior is determined by three coordination parameters:

Nth-Move Value

Teams repeatedly wait N moves before attempting to communicate. In the

first set of experiments (described in section 3.2), N is set to 5 so teams made

5 moves between each attempt to swap prey agents. By increasing N, teams

spend less time attempting to communicate but may lose opportunities for

swapping prey assignments.

Time-Out Counter

The wait time in states 1 and 4 of the transition diagram, Fig. 3, is specified

by the time-out counter. This parameter limits the time spent by the teams in

the coordination cycle and is measured in simulation time units of ∆t. (In the

experiment described in Section 3.2, the time-out counter is set to 15 ∆t; that

is, during a coordination cycle, each agent waits 15 clock ticks for messages

from other agents before timing out and selecting a move.)

12

Team-Distance Threshold

This parameter is used to decide when to stop attempting to swap prey agents.

As the team members converge on their prey agent, the sum of each agent’s

straight-line distance to the prey agent decreases. Once this distance,

D location agent location preyi
i

= | − |
=
∑ () ()

1

4

,

falls below the Team-Distance Threshold, the team captain will not enter a

coordination cycle. The motivation for this restriction is that once a team

converges on its prey agent, it is improbable that switching prey agents will

be of benefit. The minimum distance, D = 4, is attained when the team has

captured its prey agent. (In the set of experiments described in Section 3.2,

the threshold was set to 5, a value that permitted a near-maximum number of

coordination attempts.)

In the second set of experiments (Section 3.3), we introduce a performance measure

P that is the weighted, linear combination of both the average time (Avg.) and the

maximum time (Max) for the three teams:

P = w·Avg + (1-w)·Max,

where w is the weight. We chose a weight of 1/3, which is conservative in that the

contribution of the slowest team has twice as much influence as the average of all three

teams. Other metrics could be chosen depending on what is important to the system

builder.

13

3.2 Initial Results with and without Coordination

The first experimental results confirm that coordination among teams on prey

selection improves the average performance of the teams. Teams attempt to coordinate

on every 5th system move and are allowed 15 ∆t to complete their interactions. After 15

∆t, any coordination attempt is aborted. Each trial was run to completion in that all prey

agents were captured. The results from running 30 trials using the starting configuration

are shown in Table 1. The Average-Moves and Average-Time columns represent the

average number of moves and the average time cost for the 30 trials for each team. The

third column is the average time cost of all three teams. The last column shows the

standard deviation for time costs with and without coordination.

Average
Moves

Average
Time

Average
Time/Move

StdDev
Time

Without Coordination 43.7 4376 100 551

With Coordination 35.3 3670 104 680

Percent Improvement 19.1 16.1 - 4.0 -23.4

Table 1: Comparison of Coordinated versus Noncoordinated Teams

Table 1 shows that coordination reduces the average number of moves a greater

percentage than the average time. This difference is because coordination reduces the

number of moves but increases the time per move; coordination requires spending time

sending messages and waiting in coordination cycles. In this first experiment,

coordination reduced the number of moves by 19.1%, but the time per move increased

4% resulting in a 16.1 % reduction in the total time required to capture all three prey

agents.

14

However, coordination increased the variance of the results measured in both the

number of moves and the expended time. Swapping depends on the positions of the prey

and predator agents. Since prey agents start in random positions, not all trials required

swapping. In trials where swapping had no benefit, the predators still spent time in

coordination cycles only to find that a swap would not help.

To better illustrate this result, a frequency count of the results is shown in Table 2.

The frequency count is the number of trials that fall within a 500 unit time range. For

example, in the No Coordination column at the time of 4000, the count is 7: the number

of trials whose average time is between 3500 and 4000. The probability distribution

graph is shown in Fig. 5. The frequency count for the coordinated system has a local

maximum at 4000 compared to the local maximum of 5000 for the system without

coordination. This indicates the cooperating agents benefited from the time spent trying

to interact.

Time
No

Coordination Coordination
2000 0 0
2500 0 1
3000 0 4
3500 1 8
4000 7 10
4500 9 2
5000 11 4
5500 1 1
6000 1 0
6500 0 0

Table 2: Frequency Count

15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

Average Time

P
ro

ba
bi

lit
y

No Coordination

Coordination

Fig. 5: Probability Distribution of Average Time for Systems with and without Coordination

3.3 Experiments to Determine Improved Values for Coordination Parameters

Experiments were run using the starting configuration of Fig. 4 and varying the

Team-Distance Threshold. The Time-Out Counter is set at 15 ∆t and the Nth-Move Value

is set at 5—the teams enter a coordination cycle of 15 ∆t every fifth move. The results

shown in Table 3 are averages over 25 trials for each value of the Team-Distance

Threshold. The Average-Time and Average-Moves columns are the average time and

average number of system moves for the teams to capture their prey. The Maximum-Time

and Maximum-Moves columns are the average time and number of moves for the last

team to capture their prey—the team that required the maximum number of system moves

16

and simulated time. The last column shows the value of P, the overall performance

metric defined above.

Team-
Distance

Threshold

Average
Time

Maximum
Time

Average
Moves

Maximum
Moves

Standard
Deviation

Moves

P

05 3647 4774 35 46 9 4398
10 3603 4472 35 43 7 4182
15 3415 4412 33 43 8 4080
20 3412 4358 33 42 8 4043
25 3601 4396 35 43 7 4131

Table 3: Comparison of Team Distance Thresholds

Shown in Fig. 6 are the values of P plotted for each of the values of the Team-

Distance Threshold. The values of P are based on an average of 25 trials for each value

of the Team-Distance Threshold. The best performance is obtained with the Team-

Distance Threshold set at 20. This value is the total of each team member’s distance,

measured in units of grid squares, from the location of the team's prey agent. When the

team's total distance to the prey is less than 20, the team captain will not enter a

coordination cycle. If the Team-Distance Threshold is set above 20, then too many

coordination opportunities are missed. If the Team-Distance Threshold is set below 20,

then (1) there are too many coordination cycles taking place in which the teams do not

switch prey agents and (2) there is too much time spent waiting without cooperating. The

value of 20 seems to be a good balance between having too few opportunities to interact

and wasting too much time in unproductive coordination cycles.

17

3900

4000

4100

4200

4300

4400

5 10 15 20 25
Team-Distance Threshold

P
er

fo
rm

an
ce

Fig. 6: Performance vs. Team Distance Thresholds

The next two experiments focus on finding an improved number for the Nth-Move

Value given that theTeam-Distance Threshold is set at 20 and the Time-Out Counter

remains at 15 ∆t; that is, teams enter a coordination cycle of 15 ∆t unless the Team-

Distance Threshold is 20 or less. The results shown in Table 4 are averages over 25 trials

for each value of the Nth-Move Value. Shown in Fig. 7 are the values of P plotted for

each of the values of the Nth-Move Value.

Nth-Move
Value

Average
Time

Maximum
Time

Average
Moves

Maximum
Moves

Std-Dev
Moves

P

05 3484 4357 34 42 7 4066
10 3819 4781 37 47 8 4460
15 3528 4466 35 44 8 4153
20 3595 4579 35 45 8 4251
25 3701 4625 36 46 8 4317
30 3659 4733 36 47 9 4375

Table 4: Comparison of Different Nth-Move Values

18

3900

4000

4100

4200

4300

4400

4500

5 10 15 20 25 30

Nth-Move Value

P
er

fo
rm

an
ce

Fig. 7: Performance vs. Nth-Move Values

The best result is obtained with the Nth-Move Value set at 5. However, there is no

clear pattern indicated by the graph; the maximum performance value occurs at N = 10,

but this value is inconsistent with the rest of the results. Based on this anomaly, we

examined all values of N from 1 to 10, again with the Team-Distance Threshold set at 20

and the Time-Out Counter at 15 ∆t. The results of this experiment are shown in Table 5

and the performance rating, P, is charted in Fig. 8, which shows that the optimum value

for N is 5.

Nth-Move
Value

Average
Time

Maximum
Time

Average
Moves

Maximum
Moves

Standard
Deviation

Moves

P

1 3913 5124 36 47 9 4720
2 3567 4600 34 44 8 4256
3 3607 4582 35 44 8 4257
4 3475 4456 34 43 8 4129
5 3479 4411 34 43 7 4100
6 3679 4641 36 45 8 4320
7 3713 4802 36 47 9 4439
8 3585 4641 35 45 9 4289
9 3646 4698 36 46 8 4347

10 3756 5112 37 50 11 4660

Table 5: Comparison of Lower Nth-Move Values

19

4000

4100

4200

4300

4400

4500

4600

4700

4800

1 2 3 4 5 6 7 8 9 10

Nth-Move Value

P
er

fo
rm

an
ce

Fig. 8: Performance vs. Lower Nth-Move Values

The final set of experiments finds an improved value for the Time-Out Counter with

the Team-Distance Threshold set at 20 and the Nth-Move Value set at 5. The Time-Out

Counter is varied from 5 ∆t to 35 ∆t in increments of 5 ∆t with the results shown in Table

6 and Fig. 9.

20

Time Out
Counter

Average
Time

Maximum
Time

Average
Moves

Maximum
Moves

Std-Dev
Moves

P

5 3898 4772 38 47 7 4481
10 3691 4490 36 44 7 4224
15 3458 4389 34 43 8 4079
20 3619 4376 35 42 6 4124
25 3577 4736 35 46 9 4350
30 3767 4918 36 47 9 4534
35 3698 4945 35 47 10 4529

Table 6: Comparison of Time-Out Counter Values

4000

4100

4200

4300

4400

4500

4600

5 10 15 20 25 30 35
Time-Out Counter

P
er

fo
rm

an
ce

Fig. 9: Performance vs. Time Out Counter Values

3.4 Summary of Experimental Results

Table 7 summarizes all our experimental results and shows the performance

improvement for both the initial and optimized coordination parameters. The Moves and

Time columns represent the average number of moves and the average time for 25 trials.

Prior to optimizing the coordination parameters, the improvement over a noncoordinated

system was 19.1% for the average number of moves; this value increased to 22.2% after

optimization. The average time improvement increases from 16.1% initially to 21% after

21

optimization. Optimization also lowers the time per move since fewer unsuccessful

coordination cycles are attempted.

Moves Time Time/Move
No Coordination 43.7 4376 100.0
Initial Coordination Results 35.3 3670 104.0
1st Pass Improved Coordination Results 34.0 3458 101.7
1st Pass Improvement with Coordination (%) 19.2% 16.1% -4.0%
2nd Pass Improvement with Coordination (%) 22.2% 21.0% -1.7%

Table 7: Comparison After Optimizing Coordination Parameters

In addition, the following table summarizes the effect of changing the value of w in

the performance metric on the best values found in searching the parameter space:

w = 0 (Slowest
team only)

w = 1/3 (Favor
slowest team)

w = 1
(Avg. time)

Team-Distance Threshold 20 20 20
Nth Move Value 5 5 4
Time-Out Counter 20 15 15

Table 8: Best Parameter Values

Table 8 shows that for different weighting values the multiple team pursuit task is

invariant to the Team-Distance Threshold and nearly invariant to the Nth-Move Value.

This result is encouraging because it suggests that these two parameters are largely

independent of each other. The only parameter value that varied significantly with the

weighting factor was the Time-Out Counter, which requires a larger value w = 0. This

result suggests that if the most important performance factor is the time for the slowest

team to capture the prey, then the deliberation cycle should be extended.

22

4 Conclusions

Our contributions are (1) the definition of three new parameters that can be used to

tune the performance of a multiagent system, (2) the introduction of a simply-computed

and flexible performance metric, (3) an experimental testbed that allows the system

designer to vary the parameters and measure the results, and (4) experimental results that

provide improved parameter values for the multiple team pursuit problem. In a broader

context, the process of searching the parameter space itself is perhaps even more

important than the specific values determined from the experiments.

The testbed has provided a useful tool for deriving new coordination parameters and

running simulations to determine better parameter values. Two of the three parameters

introduced, the Nth-Move Value and Time-Out Counter, are general enough to be used for

any multiagent system that has communication or coordination costs between teams or

individual agents. The third parameter, Team-Distance Threshold, while problem

specific, is relatively simple to derive yet effective in improving performance. Many

problem domains will likely have similar problem specific coordination parameters that

can be effective in helping to determine when coordination should be attempted.

Our experimental results show that even simple types of coordination can be

effective but that the system performance metric should include the costs of coordination.

For our experiments the teams perform best if they look for opportunities to change prey

assignments about every 5 moves and spend no more than about 15-20% of move time

waiting for replies from other teams. Tuning the system to determine when coordination

is most beneficial increases the effectiveness of the system by lowering the number of

23

unsuccessful coordination cycles. Finally, tuning the coordination parameters reduces the

average time per system move while also reducing the average number of moves.

Future work includes the automation of the parameter adjustment process by building

a machine-learning algorithm. The algorithm would take as inputs the coordination

parameters and performance metrics and produce as outputs improved values for the

parameters. There may be other parameters and performance metrics that need to be

defined.

5 References

1. M. Benda, V. Jaganathan, and R. Dodhiawala, "On optimal cooperation of knowledge

sources," Technical Report, Boeing Advanced Technology Center, Boeing Computer

Services, Seattle, WA, September 1986.

2. A. H. Bond and Les Gasser, Readings in Distributed Artificial Intelligence, Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1988.

3. M. L. Dowell, “Learning in Multiagent Systems,” Ph.D. Dissertation, Department of

Electrical and Computer Engineering, University of South Carolina, Columbia, SC,

1995.

4. M. L. Dowell and R. D. Bonnell, "Learning for Distributed Artificial Intelligence

Systems," Proceedings of the Twenty-Third Southeastern Symposium on System

Theory, Robert Werner (Ed.), 1991 pp. 218-221.

5. E. H. Durfee and T. A. Montgomery, "MICE: A flexible testbed for intelligent

coordination experiments," in Proceedings of the 9th Workshop on Distributed

Artificial Intelligence, September 1989, pp. 25-40.

24

6. E. H. Durfee and J. S. Rosenschein, "Distributed Problem Solving and Multi-Agent

Systems: Comparisons and Examples," in Papers from the Thirteenth International

Workshop of Distributed Artificial Intelligence, Mark Klein, Chair, AAAI Press,

Menlo Park, CA, 1994.

7. L. Gasser, N. F. Rouquette, R. W. Hill, and J. Lieb, "Chapter 3: Representing and

Using Organizational Knowledge in Distributed AI systems," in Distributed Artificial

Intelligence, Vol. 2, L. Gasser and M. N. Huhns (Eds.), Morgan Kaufmann, San

Mateo, CA, 1989, pp. 55-78.

8. M. N. Huhns et al., “DAI for Document Retrieval: The MINDS Project,” in M. N.

Huhns, ed., Distributed Artificial Intelligence, Morgan Kaufmann Publishers, Inc.,

Los Altos, CA, 1987.

9. R. E. Korf, "A Simple Solution to Pursuit Games," in Proceedings of the Eleventh

International Workshop on Distributed Artificial Intelligence, Glen Arbor, Michigan,

February 1992, pp. 183-194.

10. M. Merx, “The Influence of Organizational Hierarchies on the Performance of

Distributed Intelligent Systems,” Ph.D. Dissertation, The University of South

Carolina, Columbia, SC, 1989.

11. U. Mukhopadhyay, L. M. Stephens, M. N. Huhns and R. D. Bonnell, "An Intelligent

System for Document Retrieval in Distributed Office Environments," Journal of the

American Society for Information Science, vol. 37, no. 3, 1986, pp. 123-135.

12. M. P. Singh, M. N. Huhns and L. M. Stephens, "Declarative Representations of

Multiagent Systems," IEEE Transactions on Knowledge and Data Engineering, Vol.

5, No. 5, October 1993, pp. 721-739.

25

13. L. M. Stephens and M. Merx, "Agent Organization as an Effector of DAI System

Performance," Proceedings of the Ninth Workshop on Distributed Artificial

Intelligence, Eastsound, Washington, Sept. 1989, pp. 263-292.

14. L. M. Stephens and M. Merx, "The Effect of Agent Control Strategy on the

Performance of a DAI Pursuit Problem," Proceedings of the Tenth International

Workshop on Distributed Artificial Intelligence, Bandera, Texas, October 1990, pp.

263-292.

15. G. Weiss, "Learning to Coordinate Actions in Multi-Agent Systems," IJCAI-93,

Chambery, France, August 1993, pp. 311-316.

16. J. Denzinger and M. Fuchs, “Experiments in Learning Prototypical Situations for

Variants of the Pursuit Game”, Proceedings of the Second International Conference

on Multiagent Systems (ICMAS-96), 1996, AAAI-Press, pp. 48-55

17. L. Gasser, "Distributed Artificial Intelligence," in AI Expert, Vol. 4, No. 7, July 1989.

18. M. L. Dowell and R. D. Bonnell, "Knowledge Acquisition for Distributed Artificial

Intelligence Systems," USC Technical Report ECE-MLD-060-90, University of South

Carolina, Columbia, SC, 1990. Mike,

