
01ICES-18

An Electrical Power Planning Simulation and Graphical User
Interface for an Advanced Space Habitat Life Support System

Gary Huband and Michael Dowell
Math/Computer Science Department, Georgia Southern University

Copyright © 2001 Society of Automotive Engineers, Inc.

ABSTRACT

BIO-Sim is a software package developed at Georgia
Southern University that simulates the electrical power
consumption of devices in a planetary habitat life
support system. BIO-Sim consists of four parts: a
graphical user interface (GUI), a power usage
simulation, a data model, and a server/database. The
GUI allows planners to easily enter/adjust device
schedules; view the resulting power consumption on a
bar chart, as well as the average power and total energy
requirements. The simulation uses device schedules as
input and creates the power consumption data. The
database stores device properties and schedules. This
paper concentrates on a detailed description of the
software package.

INTRODUCTION

There are currently a number of Lunar/Mars test bed
habitats [1],[2]. Each seeks to answer major issues
associated with long-term human presence in a hostile
environment. One of these issues is power
management. The habitat must carry its own power
generation equipment that is limited in the amount of
power it can generate. A habitat will contain hundreds of
devices that require power and scheduling [3]. The
habitat will need high-level planning and scheduling
software to reduce crew workload and maximize the use
of limited power.

This paper describes the software package BIO-Sim, a
tool to schedule and simulate power utilization for a
habitat. This version of BIO-Sim will only model device
power consumption. The user will enter a schedule of
start/end times for each device, then view the resulting
power vs. time chart. The model does not currently
include the complex interactions with the life support
system such as automatic regulation of temperature and
oxygen/carbon dioxide levels. This paper describes the
first step in providing a high-level scheduling tool – the
software framework for the simulation and graphical user
interface.

BIO-Sim maintains a list of power consuming devices
where each device is modeled by a name, amount of

power consumed, and a schedule of activities. Each
activity models when the device is in use and is
represented by a start and end time. BIO-Sim allows the
user to view and manipulate the schedule graphically
and view power statistics on a bar chart (see Figure 1).

The software has four major parts: the graphical user
interface (GUI), the power usage simulation, the data
model, and the server/database.

The GUI allows the user to enter and manipulate a list of
device schedules. This data is saved in the database.
The simulation then takes the device schedules as input
and produces power usage vs. time data as well as
statistics on power use. The power usage data is
displayed as a bar chart in the GUI.

Figure 1: Graphical User Interface
BIO-Sim is written in the Java programming language. It
can be used as a stand-alone application, or shared
across an intranet or the internet.

The following sections describe BIO-Sim in detail. The
Data Structure section covers the software data
organization using set notation. This notation is used
throughout the paper to describe software algorithms.
The Architecture section describes the overall structure
of each part of the software package and includes
detailed descriptions of specific classes.

DATA STRUCTURE

The schedule consists of a list of devices. Each device
has a list of activities, and each activity has a start time
and an end time. This is represented using set notation.

Let D be the set of all devices:

D = {d1, d2, d3, di …, dn},

where di is the ith device in set D and n is the number of
devices. For each device,

di = {name, power, Ai},

where Ai is the set of activities for di. The power is in
Watts. The activities for a device are represented by

Ai = {ai,1, ai2, ai,3, …, ai,m},

where ai,j is the jth activity for device i, and m is the
number of activities for device i. Each activity is an
ordered pair

ai,j = (si,j, ei,j),

representing a start and an end time in minutes.

Suppose the schedule contains two devices: room
lighting and a microwave oven. The set representation is

D = {d1, d2}
d1 = { lights, 100, A1 }
A1 = { a1,1, a1,2 }
a1,1 = (2, 5) a1,2 = (14,18)
d2 = { microwave, 500, A2 }
A2 = { a2,1, a2,2 }
a2,1 = (2, 6) a2,2 = (10, 20)

The power is measured in watts. In this example, the
lights use 100 watts and the microwave uses 500 watts.
The microwave starts two minutes into the simulation
and operates for four minutes. It runs again starting at
ten minutes and operates for ten additional minutes.
This example is used later to illustrate how the
simulation builds the power chart from the schedule.

ARCHITECTURE

BIO-Sim uses a client/server/database (Figure 2)
architecture. This architecture is commonly used in
internet applications where the client is a web browser
that connects to the server across the internet to provide
access to the database. This architecture can also
easily be used for a stand-alone application or an
application shared on an intranet.

Figure 2: Client/Server/Database Architecture
BIO-Sim uses a Java application for the client, a Java
application for the server, and a Microsoft Access
database. The client includes the GUI for changing the
power schedule and viewing results and the simulation
to produce the results. When the user changes the
schedule, the new data is sent to the server via Java
Remote Method Invocation (RMI), the server then
updates the database using the Java Database
Connectivity (JDBC) programming interface. Finally, the
GUI runs the simulation and displays the new results.

Graphical User Interface

The GUI is separated into two parts – the device
schedule at the bottom, and the results at the top (usage
statistics and bar chart). The schedule portion (see
Figure 3) consists of a list of devices. Each device has
its name on the left side and a schedule of start/end
times (activities) on the right side represented as bars
arranged on a time line. The beginning of the bar
represents the start time and the end of the bar
represents the stop time for the activity. To modify an
activity, the bar can be repositioned to change both start
and end times or, the bar can be resized to change one
of the times.

Figure 3: Device Schedule
The user adds a device to the schedule simply by right-
clicking in the device area and choosing a device from a
list of available devices. To add an activity to this new
device or an existing device, the user right-clicks in the
device activity area and enters a start and end time. To
delete a device the user right-clicks on the device and
chooses delete. Right-click on a bar and choose delete
to delete the activity. As the user makes each
modification, the simulation runs and automatically
updates the bar chart and statistics in the top part of the
GUI.

The bar chart shows the total power used versus time,
the total energy used, and the average power during the
simulation time (see Figure 4). The bars show both the
power used by all devices (black portion of the bar) and
the total power needed to cool the waste heat from the
devices (gray portion of the bar). The chart is
horizontally scrollable and the scrolling is synchronized
with the device schedule.

DB
GUI

Browser

Client Server

Java

Web

Network

JDBCRMI

Figure 4: Bar Chart
The interface was constructed using software classes
from the Java Swing application programming interface
(API). Swing is a very powerful set of graphics
components designed to make GUI construction
relatively easy.

Power Simulation

A simulation is a model of a real-world system; in this
case a habitat. The habitat as a system includes the
habitat structure, humans, plants, an atmosphere, and
electronic devices. Since the objective is to model power
consumption, the simulation only includes the devices.
Each device has two discrete behaviors – start of power
consumption and end of power consumption. These
events must be aggregated into partitions to produce the
power versus time bar chart; allow calculation of the
average power and total energy consumed. Using set
notation, the algorithm for the simulation is as follows:

Let S = {si,j | si,j ∈ Ai} be the set of start times and
E = {ei,j | ei,j ∈ Ai} be the set of end times. Then create
Q, an ordered set of discrete times (q) that form
partitions of the activities. Thus,

Q = { qk | qk ∈ E∪S and qk < qk+1 }

where k is a discrete event and k+1 is the next discrete
event. Each partition is a single bar on the chart and
represents a period of time when one or more devices
are on. The total power used during the time period is
the sum of the powers of all devices in the partition

∑
+≤≤

+ +=
1

*1
kkk tqt

ikk powerPowerPower δ

where Power is the total power for a partition, poweri is
the power for the ith device and δ is defined as

⎩
⎨
⎧

∈−
∈

=
Eq
Sq

,1
,1

δ

The δ operator adds the power for a start event and
subtracts the power for an end event. Using the
example data,

Q = { 21s, 22s, 51e, 62e, 102s, 141s, 181e, 202e }

where the s subscript represents a start event and the e
subscript an end event. Iterating through Q produces
the total power during a partition:

@t=2, Power = (power1*1)+(power2*1) = 100+500 = 600
@t=5, Power = 600+(power1*-1) = 600-100 = 500
@t=6, Power = 500+(power2*-1) = 500-500 = 0
@t=10, Power = 0+(power2*1) = 500
@t=14, Power = 500+(power1*1) = 500+100 = 600
@t=18, Power = 600+(power1*-1) = 600-100 = 500
@t=20, Power = 500+(power2*-1) = 500-500 = 0

Pairs of times form the partitions (bar chart divisions).
The first partition is from 2 to 5 minutes with a total
power of 600 Watts and the second partition is from 5 to
6 minutes with a total power of 500 Watts (see Figure 4).

The bar chart also shows the total energy used and the
time averaged power for the simulation. The total
energy is calculated from

∑ ∆= kk tpowerEnergy *

where ∆t = e-s is the time interval for a partition. The
time averaged power is then

∑ ∆= kk tpower
T

erAveragePow *1

where T is the total simulation time.

The simulation software implements the algorithm using
the classes shown in Figure 5 and is based on a
generalized discrete event framework [4]. This figure
uses the Uniform Modeling Language (UML)
conventions [5], [6] to show the relationship between
classes. A line from one class to another ending in an
arrow indicates that the class is a child class
(inheritance). A line ending in a diamond indicates the
class is used as an attribute of the class (composition).
A line without an arrow indicates the class is simply used
within the other class.

 r r

The sim
each ac
orders t
at the
remove
BioSimulato
t
h
b
d

e t
ListQueu
t t
BioPowerEven
ul
iv
e
eg
 f

e
Devic
Figure 5: Simulation class
ation receives the schedule d
ity for a device in a priority que
 devices by start time with the
inning of the queue. Each

rom the queue and a bar for t
Simulato
OrderedSe
e
a
u

lo
a

he
Even
s
ta and places
e. The queue
west start time
ctivity is then
 chart data is

created. The activity is then placed back into the queue
but is ordered by the stop time. The next start or stop
time taken off the queue ends the data for one bar on
the chart and starts the next bar. The simulation runs
until all activity stop times are processed.

The BioSimulator class contains the ordered queue
represented by the ListQueue class. The queue
contains many events. Each event is an start or end
time for a device.

The device class contains the data for one device - the
device name, power, and the activities. Table 1 shows
all of the attributes and methods for the Device class.
Besides the usual get and set methods, the class has
methods to add an activity, remove all activities, check if
the device has any activities, and test for equality with
another device.

Table 1: Device attributes and methods

Device

String _name
double _power
Vector _activities

Device(String name,double power)
String get_name()
double get_power()
 Vector get_activities()
void set_name(String name)
void set_power(double power)
void add_activity(Schedule_Db)
void removeAllActivities()
boolean isScheduleEmpty()
boolean equals(Device device)

Data Model

The data model enables other class objects to change
the schedule data and retrieve updated schedule data.
The model provides access to the schedule through the
server by calling server methods. Figure 6 outlines the
model classes.

Figure 6: Model classes
Each class that changes schedule data must call a
model method. The model has a method for each data
change (see Table 2). For example, when the user
deletes an activity using the GUI, the GUI must call the
delete method of the model. The delete method then
calls the delete method of the server, which deletes the
activity from the database.

Each class that wants to view schedule data must
register as a listener with the model. When the

Table 2: Model Methods

SimModel

String _serverURL
 SimServerInterface _server
Vector _listeners
 boolean _db
 DemoData _demo

SimModel()
addListener(SimListener)
SimServerInterface get_server()
String get_serverURL()
removeListener(SimListener)
fireChange()
insertActivity(Device,Schedule_Db)
deleteSchedule(Device)
deleteActivity(Schedule_Db)
updateActivity(Schedule_Db)
getScheduleData()
getDeviceList()
SimServerInterface getServer()
void callServer(String operation, Schedule_Db sDb)

schedule changes the model will notify each listener and
the listener calls the appropriate model method to
retrieve data. For example, the chart data class first
registers as a listener by calling the addListener method
of the model. Whenever the schedule changes the
model will execute the fireChange() method and the
chart data class will be notified. The chart data class
then calls the getScheduleData() method of the model
which in turn calls the getScheduleData() method of the
server. SimModel

Server/Database

The server provides access to the schedule data in the
database through methods that correspond to methods
in the model (i.e. getScheduleData(), getDeviceList(),
etc.). The server could be located on the local machine
or a remote machine connected by a network. The
model and server communicate across the network
using a Java technology called Remote Method
Invocation (RMI).

Vector

Device
DemoData

Schedule_Db

SimServerInterface

RMI allows two objects to communicate transparently
across a network. Transparent means that the method
calls for a local object and a remote object are identical
– whether the object is local or remote is transparent to
the user. The local object only needs to know the
location of the remote object (a machine address) and
the available methods of the remote object. In BIO-Sim
the server methods are described in an interface class
called SimServerInterface. The model uses this class to
connect to the server and call the methods to manipulate
the schedule in the database.

The server is responsible for retrieving information from
the database using queries written in the Structured
Query Language (SQL). SQL is a standard query
language for relational databases. The server uses
Java Database Connectivity (JDBC) classes (see Figure
7) to connect to the database and submit queries.

Uni
serv
Sim
invo
Driv
Sta
Res
exe

The
tabl

Each entry in the device table has the data for one
device: device name, power used, and cooling power.
The schedule table contains the start and end times for
each activity. The tables are related by the device
name. To retrieve all of the activities for one device the
SQL statement selects the data for the given device
from the devices table and all records from the device
schedule table with the device name.

CONCLUSION

Bio-Sim is an easy-to-use power management tool for
design and testing of a planetary habitat. A user can
create a power schedule and view the resulting power
use, average power, and total energy used. The user
can then explore different scenarios by graphically
manipulating the schedule and viewing the results.

In the future the Bio-Sim simulation will include more
advanced features such as

• Modeling of cooling system.
• Modeling of oxygen/carbon dioxide levels.

SimServer
Figure 7: Server
castRemoteObject provides
er to communicate
ServerInterface defines the s
ked by remote objects suc
erManager creates da

tement is used to form
ultSet holds the data return
cution of a SQL statement.

 database contains a table
e for the schedule as shown i

Figure 8: Databas

• Automatic generation of schedules for statistical
analyses.

• Integration with control software to provide plan
evaluation.

DriverManager
ResultSet
These upgrades will increase the habitat model fidelity
and increase usefulness in planning and design.
Statement
UnicastRemoteObject
 c
th
a

h
t
S
e

n

e

SimServerInterface
lasses
e functionality for the
cross a network.

erver methods that are
 as SimModel. The

abase connections,
QL statements, and
d from the successful

for the devices and a
 Figure 8.

 Tables

REFERENCES

1. “Bioregenerative Planetary Life Support Systems
Test Complex”, http://advlifesupport.jsc.nasa.gov/
Bio~Plex/Bio~Plex~Enter.htm.

2. “Mars Society Flashline Arctic Research Station”,
http://arctic.marssociety.org/

3. Chen, G., and Dowell, M., Simulation of Power
Utilization for Planning and Control of BIO-Plex
Activiities.

4. Altmann, Michael, “Writing a Discrete Event
Simulation: Ten Easy Lessons”,
http://www.nmsr.labmed.umn.edu/~michael/des/.

5. Rossetti, Manuel, D., et al, “SIMFONE: An
Object-Oriented Simulation Framework”, Proceeding
of the 2000 Winter Simulation Conference, Dec,
2000.

6. Booch, G., Rumbaugh, J., and Jacobson, I. The
Unified Modeling Language User Guide, Addison –
Wesley, 1999.

CONTACT

Gary Huband
(Instructor, Computer Science)
ghuband@gsu.cs.gasou.edu
http://www.gsu.cs.GaSoU.edu/faculty/ghuband
(912) 681-0364

Dr. Michael Dowell
(Assistant Professor, Computer Science)
dowell@gsu.cs.gasou.edu
http://www.gsu.cs.GaSoU.edu/faculty/dowell
(912) 681-0251

Georgia Southern University
Department of Math and Computer Science
Landrum Box 8093
Statesboro, GA 30460
FAX (912) 681-0654.

ADDITIONAL SOURCES

A BIO-Sim demo is available on the web at
http://www.gsu.cs.gasou.edu/faculty/ghuband/research/h
abitat_power_planning.htm. Your browser will
automatically download the latest version of Java
needed to run the demo.

For more information on Java you can go to the Sun
java site at http://www.java.sun.com.

DEFINITIONS, ACRONYMS

Definitions

D: set of all devices.
d: a single device.
a: a single device activity.
A: set of all activities for a device.
s: device activity start time (minutes).
e: device activity end time (minutes).
S: set of all device activity start times.
E: set of all device activity end times.
q: a discrete time event (s or e).
Q: an ordered set of discrete times.
t: time (minutes).
T: total simulation time (minutes).

Acronyms

API: Application Programming Interface.
GUI: Graphical User Interface.
JDBC: Java Database Connectivity.
RMI: Remote Method Invocation .
SQL: Structured Query Language .
UML: Uniform Modeling Language.
.

