List of Topics
https://csci-1301.github.io/about#authors
November 2, 2023 (01:03:19 PM)
Table of Contents

General Concepts
Students should understand the meaning and importance of the following notions. This statement should be read as “understand the first sentence or paragraph on a wikipedia article”, taking high-level programming language as an example.
· Programming languages types and paradigms
· Machine language instructions
· Assembly instructions
· High-Level Programming Languages
· Object-oriented paradigm and data hiding
· The difference between roles (user, tester, programmer)
· How complex piece of software reuse previous pieces.
· The importance of security 🛡
· Types of attack (malware, phishing, social engineering, zero-day)
· Types of loss (loss of integrity / availability / confidentiality)
Writing and Compiling Programs
· Understand what the “flow of development” is:
· Having a goal
· Writing down specifications
· Creating the source code
· Running the compiler
· Reading the compiler’s output, warning and error messages
· Looking for documentation and help on-line and off-line
· Testing
· Making sure the program is secure 🛡
· Editing
· Reusing
· Using an IDE to
· Create a project,
· Perform some of the steps of the “flow of development”,
· Correctly save and re-open projects,
· Understand basic features of break points and debugging. ❓
The IDE used can be MonoDevelop or Visual Studio, the student can pick other IDEs if they wish but they will not be supported.
Computer Usage
· How to download and install an IDE in a secure way 🛡
· How to share and zip a project
· How to use shortcuts ❓
· How to look for on-line documentation
The Structure of a Program
First Program - Hello World
The students should understand all the components of a simple “Hello World” program:
· Comments (in line and block)
· using statements and namespace / API concepts
· blank lines and spacing
· indentation
· intro to classes and methods’ structures (body / header)
· status of Main method
· intro to Console’s Write and WriteLine
· string literal
Rules and Conventions
· The difference between a “rule” (e.g. case-sensitivity) and a “convention” (commenting your code).
· Reserved words
· Identifiers and naming conventions
· That the distinction can vary with the programming language
· Importance and role of { and }
Datatypes and Operators
Variable
· Datatype (numerical, boolean, string, character) – including a mention of reference datatypes
· Declaration, assignment, initialization
· Naming variables correctly
· The absence of default value after declaration (un-assigned variables)
Numerical Values
· Integers (int, long) – range and size, signature (uint)
· Floating Point (float, double, and decimal) – range, size and precision,
· Type casting (e.g. from int to double, and legal operations between different datatypes) and casting operator (e.g. (int)).
· Overflow and underflow 🛡
Booleans
· Possible values (true, false)
· Usage
· That boolean variables are called “switches”
Operators
· Binary arithmetic operators: *, /, %, +, -
· Unary arithmetic operators: ++, --
· The difference between postfix and infix notation for unary operators ❓
· Comparison operators: !=, ==, >, >=, <, <=
· Boolean logical operators: &&, ||, !
· Precedence and “validity” of some expressions (typically, ! 2 < 3 is not a valid expression)
· Combined assignment operators: +=, *=, -=, /=, %=
Strings
· ReadLine method
· Concatenation (+)
· Interpolation
· Additional methods: ToLower, ToUpper, Contains, StartsWith, EndsWith ❓
Displaying Strings on the Screen
· Format specifiers for numbers: – Currency (C),
· Fixed-point (F) or Number (N)
· Percent (P) ❓
· Exponential (E) ❓
· The String.Format method ❓
Characters
· Possible values and the existence of binary, oct, dec and hex representation (cf. for instance wikipedia)
· Escape character and sequences: \n, \t, \\
· Conversion between glyph and decimal value.
· Various methods: ToLower, ToUpper ❓
Lists ❓
· Creating a list of numbers or strings
· Adding items using the Add method
· Accessing items using []
· Removing and Inserting (Remove, RemoveAt, Insert)
· Count property
Basic Control Structures
Selection Statements
For each of the following structure:
· if
· if-else
· if-else if
· nested ifs
· switch
The student should understand
· Their importance,
· Their usage,
· Their syntax,
· Their flow,
· When to use one or the other,
· The common pitfalls (e.g., writing a condition in a switch).
Repetition Statements
For each of the following structure:
· foreach
· while
· for
· do{…}while(…) ❓
The student should understand:
· Their importance,
· Their usage,
· Their syntax,
· Their flow,
· When to use one or the other,
· The common pitfalls (e.g. = instead of ==, <= n vs < n)
As well as being capable of identifying the difference between
· Counter-controlled,
· Sentinel-controlled,
· User-controlled
and defining the term “accumulator”
Object-oriented programming
Class Conception
· Need and interest of specification 🛡
· UML Class diagram: interest, usage, and simple case (single class with attributes, methods and constructor).
· Access modifier (private, public)
· Principle of least privilege (private variables and methods where possible) 🛡
Class Implementation
· Attributes (and their default value, as well as how to change them)
· Get and Set methods
· Properties ❓
· Method signature
· Overloading
· Variable shadowing ❓
· Constructors: default constructor and “custom” constructor
Class Usage
· The new keyword
· Object creation using default and custom constructors
· Object manipulation: calling a method, setting an attribute, calling the ToString method implicitly.
Additional Considerations
· ToString method
· static class and methods
· Math Class (Abs, Sqrt, Pow) ❓
Random Class
· Creating a generator with new Random()
· Generating non-negative integers,
· Generating integers between ranges,
· Generating double,
· Generating a random word ❓
· Potential problems with deterministic generators 🛡
Testing and Debugging
· How to test intelligently
· How to test every instruction
· How to test boundary conditions
Interacting with Users
· Input validation 🛡
· TryParse in the int and decimal classes.
· Reading a single character from the user ❓
Data structures
Constant
· The const keyword
· Example usages (Avogadro constant, miles-to-kilometer ratio, speed of light) and use case.
· Math.PI ❓
· Static constant ❓
Enumerated Datatype ❓
· Define enumerated datatypes using enum
· Enum values (i.e. numerical values assigned to enumerated values by default) ❓
· Use enumerated datatypes (variable declaration, assignment, displaying).
Arrays
Only one-dimensional arrays should be discussed.
· Vocabulary: index (starting at 0), bounds.
· Length property
· Resize method ❓
· Different syntaxes for initializing and declaring arrays ❓
· Buffer overflow 🛡
Exceptions 🔜
· try…catch blocks
· Types of exceptions
· finally
· Defining your own exception
File I/O 🔜
· StreamWriter and StreamReader classes
· Manipulating binary and text files
· File class ❓
