
Project #2 20 p.

1 Instructions

Due Date: April, 28th, 2022 no later than 11:59pm.

Task: For the second project,

• Read carefully the project below, and download the template.
• Solve the project, starting from the template. Make sure you test your program thoroughly, with relevant
test cases, and comment your code.

• Share the project, zipped, with me on D2L. Remember to write your name and the date in a delimited
comment at the beginning of the source code. Make sure that your project is properly uploaded before
04/28, 11:59pm.

• I am happy to provide partial feedback before the due date. Either upload your current code to D2L and
send me an email, or bring the code to me during office hours or an appointment. DO NOT seek help
from your classmates, the UCAs, or Programming Friday Mornings for this project. Also, make sure all
of your code is something you wrote yourself, using your understanding of the instructions. DONOT use
a solution found online. You are, however, welcome to look at the official C# documentation or other
sources in order to better understand methods and features of C# used in the project.

Knowledge: The project may require an understanding of the following topics:

• Classes and objects,
• Loops,
• Decision structures,
• Arrays1,
• and Random.

Some of these topics have yet to be covered in class, but all will be covered at least one week before the deadline.
I highly recommend reading ahead so that you can complete your project well in advance.

2 Rover On The Line Project

In short: In this project, you are asked to design, implement and test a class that represents a rover navigating on a
(finite) line, looking for its target, placed at an unknown location on this line. You will then have to design an
algorithm that sends instructions to this rover to find the target and stop on it. Optionally, you will design and
implement a way of returning the rover to its original location.

In more detail: Design: You need first to design a class for the RoverOnTheLine problem. This class should contain
all the attributes and methods required to represent the following information and actions:

• A rover only explores a finite, “1-dimensional”, ground (think of a segment on a line).
• The initial position of the rover and the position of the target is on this finite ground.
• The number of steps made by the rover so far (that is, the number of times it moved) is recorded.
• The class requires two constructors:

– Aconstructor that takesmultiple arguments, and sets all the attributes to the arguments, provided
they satisfy the specification above (you are free to decide what happens if not). The number of
steps, in particular, should be 0.

– A constructor that does not take arguments, and sets all the attributes to random values: the size
of the ground to cover should be a random value lesser than 101, and the other attributes should
be set randomly, but respecting the specification above.

• A method to move left, that should move the rover left (that is, decrement its position) and return
true if themovement was possible (if the rover would not “fall off the ground”), and leave the position
unchanged and return false otherwise.

• A similar method to move right.
• A method that indicates if the rover is on the target.

1Even if they are not required: you can solve this problem without usign arrays. It may even be simpler to do without.

15 April 2021 CSCI 1301 Page 1 of 2

RoverOnTheLine.zip


Project #2

• A method that returns a description of the current state of the rover.

Implementing: Once you have all the elements you need to implement this class, start implementing it. “Mock-
up”methods are included in the template, but you should edit their signature, change their body, and tweak
them any way you see fit. Only the names are fixed. Once you have completed your implementation, the
program in Program.cs should behave “as expected” and create a Rover on a ground of size 5, place the
rover on its right-left end, and put the target at 2. It will then display information about the rover, try to
move it right (but fails to do so), move it left three times, check that it is indeed now at the same location
as the target, and then displays the information one more time.

Testing: As a final test, you need, in the Main method, to

• Create a rover with random values, using your no-arg constructor,
• Write a small program that guarantees that your rover will always find its target and stops.
• Displays the total number of steps made by the rover.

Optional: Edit your class and program so that there is also aGoBackmethod that returns the rover to its original
position.

Example: Here is a sample execution (where the optional part was completed: you need not to display the original
position unless you are planning on completing this part as well).

Ground to cover : 1..5
Current Position : 5
Original Position : 5
Target : 2
Number of steps : 0

You cannot move right!

You found it!

Ground to cover : 1..78
Current Position : 58
Original Position : 43
Target : 58
Number of steps : 435

You found it!

15 April 2021 CSCI 1301 Page 2 of 2

RoverOnTheLine.zip

	Instructions
	Rover On The Line Project

