T (A) & R (B) E-152 1000 — 1115 // N-344 1130 — 1220 // E 365 1300 — 1350

PCP — Lecture 06

Fall 2020 September 12, 2020

Last Time - Operations, conversions and reading from a user

e It is possible to read a number from the user.

o What is a class, what is an object.

o How to define and use a class.

 Some novel keywords: new (to create an object), return (to send a value back from a method), private
(to prevent access to the attributes from the “outside world”), public (to allow using the methods
from the “outside world”).

1 Unified Modeling Language

UML is a specification language with multiple benefits:

o It is cross-language (you can use it to describe a class written in C#, Java, Python, ...),

o It represents only the “surface”, and the implementations details are left to programmers,

o It is a language to interact with non-programmer, or with programmers that simply want to use the
class without knowing all of its details.

A class is represented as follows:

ClassName

- attribute: int
+ SetAttribute(attributeParameter: int): void
+ GetAttribute(): int

Note that void is optionnal. For our Rectangle class, this gives:

Rectangle

- width: int
- length: int
+ SetLength(lengthParameter : int): void
+ GetLength(): int
+ Setwidth(widthParameter: int): void
+ GetWidth(): int
+ ComputeArea(): int

2 More Methods for the Rectangle Class

Last time, in lab, you were asked to write additional methods. They look like this:

1/4

September 12, 2020 PCP — Lecture 06

public int ComputePerimeter ()

{
return length*2 + width*2;
3
public void DoubleRectangle()
{
width *= 2;
length *= 2;
X
public void Swap()
{
int temp;
temp = length;
length = width;
width = temp;
by

We could also write a method that multiply the length and width of a rectangle by a particular factor given
in argument:

public void MultiplyRectangle(int factor)
{

width *= factor;
length *= factor;

}

Note that this method is more general than DoubleRectangle, which can be “emulated” using
MultiplyRectangle(2).

3 Variables and Methods Name and Conventions

3.1 Variable Scope

A variable exists at a particular time and place in a program, that defines its scope.

3.1.1 Time

You cannot use a variable before declaring it! The following would return an error:

a = 3;
int a;

2/ 4

September 12, 2020 PCP — Lecture 06

3.1.2 Space:

¢ One project can not access the variable of another project!
o Rectangle.cs’s variables are not directly accessible in Program.cs (you have to use accessors).
e The variable in a method are not accessible from the other methods.

3.2 Renaming

Identifiers can be uniformly renamed.

int a = 3;
a += 2;

is the same as

int myVar = 3;
myVar += 2;

We will use this example to discuss the scope:

class MyClass{

private int attribute;

public void SetAttribute(int attributeParameter){..}
}

MyClass, attribute, SetAttribute and attributeParameter can be changed, those are the identifiers in
this class.

3.3 Conventions

We can change all the identifiers in the classes if we want: class names, method names, etc. But it’s good to
have conventions.

“Hard” convention:

o Variable (including instance variables and parameters) names start with a lower case.
e Classes and Method names start with an upper case.
e You must be consistent.

Variations / Conventions for instances variables and argument names:

e mAttributes or _Attributes
e SetAttributes(int aAttribute), or (int value)
o Names of accessors are up to you.

3/4

September 12, 2020 PCP — Lecture 06

4 Named Constant

A constant is a variable whose value cannot change.

const int MONTHS = 12;

const double AVOGADRO = 6.0220e23; // Avogadro Number. Units 1/mol
const double PI = 3.14159265358979;

const double MILES_TO_KM = 1.60934;

o Value at to be fixed at declaration (= can only be initialized), and cannot change.
o Name is often ALL CAPS.

For instance, 7 is defined in the Math class and can be accessed as follows:

Console.WriteLine (Math.PI);

5 Format Specifiers

We can use interpolation to display more nicely numerical values. There are four important format specifiers

in C#.

Format specifier Description
Norn Formats the string with a thousands separator and a default of two
decimal places.
Eore Formats the number using scientific notation with a default of six decimal
places.
Corc Formats the string as currency. Displays an appropriate currency symbol

($ in the U.S.) next to the number. Separates digits with an appropriate
separator character (comma in the U.S.) and sets the number of decimal
places to two by default.
Porp Print percentage

Console.WriteLine(

"\n" + $"{1234.567:N}" // 1,234.57
+ "\n" + $"{1234.5:N}" // 1,234.50
+ "\n" + $"{1234.567:E}" // 1.23/567E+003
+ "\n" + $"{1234.567:C}" // $1,234.57
+ "\n" + $"{1234.5:C}" // $1,23/.50
+ "\n" + $"{.5:P}" // 50.00%

4/4

	Last Time - Operations, conversions and reading from a user
	Unified Modeling Language
	More Methods for the Rectangle Class
	Variables and Methods Name and Conventions
	Variable Scope
	Time
	Space:

	Renaming
	Conventions

	Named Constant
	Format Specifiers

