CSCI 1301 – Exam 2 - Debriefing
Clément Aubert
November 6, 2020
You can download the exams for Section A and for Section B. Note that they were different, but of equivalent difficulty.
Below, find possible solutions and general comments.
[bookmark: problem-1]Problem 1
[bookmark: section-a]Section A
// The next 4 lines were not needed in your answer.
char iniLName;
decimal pricePaid;
iniLName = 'K'; // Dummy value, change it to test.
pricePaid = 420M; // Dummy value, change it to test.

if(pricePaid > 600M){Console.WriteLine("You are in first class");}
else if (iniLName < 'H'){Console.WriteLine("You are in second class, left-side aisle.");}
else {Console.WriteLine("You are in second class, right-side aisle.");}
You may (rightfully) think “Hey, but I didn’t know characters have an order”, and would be right. But you could also work out a solution using switch or if, like:
if(pricePaid > 600M){Console.WriteLine("You are in first class");}
else if (iniLName == 'A' || iniLName == 'B' ||
 iniLName == 'C' || iniLName == 'D' ||
 iniLName == 'E' || iniLName == 'F' ||
 iniLName == 'G' || iniLName == 'H'){
 Console.WriteLine("You are in second class, left-side aisle.");
}
else {Console.WriteLine("You are in second class, right-side aisle.");}
[bookmark: section-b]Section B
Using format specifiers and getting the conditions right were more important that getting the loop correct for that exercise.
int age;
do{
 Console.WriteLine("Please, enter your age.");
}while(! int.TryParse(Console.ReadLine(), out age) || age < 0);

if (age > 5 && age < 19){Console.WriteLine($"It's {5:C}.");}
else if (age > 18 && age < 64){Console.WriteLine($"It's {12:C}.");}
else{Console.WriteLine("It's free for you.");}
[bookmark: problem-2]Problem 2
You can use the code below to test your answers:
// The three values below are dummy.
// Change them to test your answers.
string citizenship = "US";
decimal income = 200M;
int age = 20;

switch (citizenship) {
 case("US"):
 case ("CA"):
 if (income > 100)
 if (age < 21) Console.WriteLine("Go to office A.");
 else if (age < 60) Console.WriteLine("Go to office B.");
 else Console.WriteLine("Go to office C.");
 else
 Console.WriteLine("Go to office D.");
 break;
 case ("DE"):
 if (income > 200 && age > 18) Console.WriteLine("Go to office E.");
 else Console.WriteLine("Go to office F.");
 break;
 case ("FR"):
 if (age <= 18 || income <= 10) Console.WriteLine("Go to office G.");
 else if (income > 200) Console.WriteLine("Go to office H.");
 break;
 default:
 if (age > 21) Console.WriteLine("Go to office I.");
 else Console.WriteLine("Go to office J.");
 break;
}
[bookmark: problem-3]Problem 3
The two solutions are fairly similar. Short code was priviledged below, also because they show an original use of do while loops: the multiplication actually takes place before asking for a value, so that the multiplication will be performed only if the user actually gave a value to multiply. Of course, for the first run of the loop, we multiply by the “dummy” value 1.
[bookmark: section-a-1]Section A
int product = 1;
int answer = 1;
do{
 product *= answer;
 Console.WriteLine("Enter a number, or 0 (zero) to quit.");
 answer = int.Parse(Console.ReadLine());
}while(answer != 0);
Console.WriteLine("The product of the numbers you entered is " + product + ".");
[bookmark: section-b-1]Section B
int product = 1;
int answer = 1;
bool isNumber;
do{
 product *= answer;
 Console.WriteLine("Enter a number, or anything else to quit.");
 isNumber = int.TryParse(Console.ReadLine(), out answer);
}while(isNumber);
Console.WriteLine("The product of the numbers you entered is " + product + ".");
[bookmark: problem-4]Problem 4
For both sections, refer to the solution given in lab 12. The version given to Section B was actually a simplification of that exercise.
[bookmark: problem-5]Problem 5
The questions were identical for both sections:
· A constructor does not have a return type.
· The signature of a method is its name and the ordered list of its input type. So, the signature of the given method is Scale, int.
· Method overloading is when two methods have the same name (but different signatures, of course).
· public Square(){} is a constructor for that class that takes no argument.
· The ToString() method is implicitely called when we try to display an object using Console.WriteLine.
· The UML diagram would like like this:
	Square

	- dimension : int

	+ GetDimension() : int

	+ SetDimension(dimensionP : int) : void

