PCP − Lecture 04
Fall 2020
Clément Aubert
September 3, 2020
[bookmark: last-time---datatypes-and-variables]Last Time - Datatypes and Variables
· Presentation of the different datatypes (value types and reference types).
· Decreasing precision from float to double, double to decimal.
· Corresponding literals.
· int and string variables: declaration, assignment, initialization, and manipulation.
· Miscellaneous information on variables and introduction to numeric operations.
[bookmark: operations-on-int-reminder]Operations on int (reminder)
Suppose we are given an int variable, myVar, with which we can perform the following operations:
	Operation
	Arithmetic Operator
	Algebraic Expression
	Expression

	Addition
	
	
	myVar + 7

	Substraction
	
	
	myVar - 7

	Multiplication
	
	
	myVar * 7

	Division
	
	,
	myVar / 7

	Remainder (a.k.a. modulo)
	
	
	myVar % 7

For the remainder, courtesy of wikipedia:
For example, the expression “5 mod 2” would evaluate to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while “9 mod 3” would evaluate to 0, because the division of 9 by 3 has a quotient of 3 and a remainder of 0; there is nothing to subtract from 9 after multiplying 3 times 3.
We use = to assing a value to a variable, but we can also use = followed by one of the previous operator to obtain an “augmented assignment operators” or “compound assignment operators”:
int a = 3, b, c; // Multiple declarations with an assignment.
b = 34 + a;
a = a - 1; // Self-assignment
a -= 1; // Shorthand, this is the same as a = a - 1;
[bookmark: X988b442732476b4fdd7b6846484a52891bbe306]Implicit and Explicit Conversions Between Numeric Datatypes
As we saw in the cheatsheet, we can store e.g. a float literal inside a double variable (that’s an automatic, or implicit conversion), but we can not store a double literal inside a float variable. C# refuses to do this “automatically”, because we risk to lose information, but we can “force” it to perform this operation explicitly using cast operators.
float b = 4.7F;
int a = (int) b; // A cast operator is simply the name of the datatype between parenthesis. Here, we convert a float into an int.
Using casting allows us to go “against” those safe-guards, and can lead to the following complications:
· Storing an imprecise number using a precise datatype (e.g. from double to decimal).
· Truncating a floating-point number as a “truncated” number (e.g. from double to int).
· Rounding a precise number to fit a less precise datatype (e.g. from decimal to double).
[image: drawings/conversions.svg]
Note that you can, actually, store a float literal inside a double, but that you can not store a double or a float literal inside a decimal.
[bookmark: operations-on-other-numerical-datatypes]Operations on other numerical datatypes
Actually, there is a + operator for float, double, and decimal, and the same goes for -, *, and %
Casting can be useful when one wants to divide integers:
int pie = 21;
int person = 5;
	Operation
	Result
	Type of the multiplication used

	pie / person
	4
	int

	(float)pie / person
	4.2
	float

	pie / (float)person
	4.2
	float

	(float)(pie / person)
	4
	int

Note that the integer division simply “truncates”, and does not round up (that is, 19 / 10 would return 1).
Also note that in “4.2”, “4” is the integer, “.” (period) is the decimal separator, not to be mixed with “,” (comma), the thousands separator.
When performing an operation involving different datatypes, the result type of the operation is the “most precise” datatype if it is allowed (i.e., an implicit conversion can take place), otherwise an error is returned. Refer to the “Result Type of Operations” chart from the cheatsheet for more detail.
[bookmark: operations-on-strings]Operations on Strings
We saw that we could perform interpolation on strings to “fetch” the value of a variable and “insert” it into a string; however, we can use other operations as well. For instance, we can use the + sign for strings as well, to perform an operation called “concatenation”:
string name = "Bob";
string greetings = $"Welcome, {name}!\nI'll be your guide."; // interpolation

string text = "Hi there" + ", my name is Marie."; // Concatenation. This "join" the strings together.

Console.WriteLine(text); // We can write directly the name of the variable, instead of using interpolation, if we wish.
Note that the + sign denotes different operations depending on the type of the operands (string or int, for instance).
[bookmark: reading-a-string-from-the-user]Reading a String From the User
We can ask the user to give their name to the program while it is running as RunTime input. We can use a statement like:
string yourFirstName = Console.ReadLine();
to store the value entered by the user from the output window in the string variable labeled yourFirstName.
rId25.svg

