
T (A) & R (B) E-152 1000 → 1115 // N-344 1130 → 1220 // E 365 1300 → 1350

PCP − Lecture 06
Fall 2020 September 12, 2020

Last Time - Operations, conversions and reading from a user

• It is possible to read a number from the user.
• What is a class, what is an object.
• How to define and use a class.
• Some novel keywords: new (to create an object), return (to send a value back from a method), private

(to prevent access to the attributes from the “outside world”), public (to allow using the methods
from the “outside world”).

1 Unified Modeling Language

UML is a specification language with multiple benefits:

• It is cross-language (you can use it to describe a class written in C#, Java, Python, …),
• It represents only the “surface”, and the implementations details are left to programmers,
• It is a language to interact with non-programmer, or with programmers that simply want to use the

class without knowing all of its details.

A class is represented as follows:

ClassName

- attribute: int
+ SetAttribute(attributeParameter: int): void

+ GetAttribute(): int

Note that void is optionnal. For our Rectangle class, this gives:

Rectangle

- width: int
- length: int

+ SetLength(lengthParameter : int): void
+ GetLength(): int

+ Setwidth(widthParameter: int): void
+ GetWidth(): int

+ ComputeArea(): int

2 More Methods for the Rectangle Class

Last time, in lab, you were asked to write additional methods. They look like this:

1 / 4

September 12, 2020 PCP − Lecture 06

public int ComputePerimeter()
{

return length*2 + width*2;
}

public void DoubleRectangle()
{

width *= 2;
length *= 2;

}

public void Swap()
{

int temp;
temp = length;
length = width;
width = temp;

}

We could also write a method that multiply the length and width of a rectangle by a particular factor given
in argument:

public void MultiplyRectangle(int factor)
{

width *= factor;
length *= factor;

}

Note that this method is more general than DoubleRectangle, which can be “emulated” using
MultiplyRectangle(2).

3 Variables and Methods Name and Conventions

3.1 Variable Scope

A variable exists at a particular time and place in a program, that defines its scope.

3.1.1 Time

You cannot use a variable before declaring it! The following would return an error:

a = 3;
int a;

2 / 4

September 12, 2020 PCP − Lecture 06

3.1.2 Space:

• One project can not access the variable of another project!
• Rectangle.cs’s variables are not directly accessible in Program.cs (you have to use accessors).
• The variable in a method are not accessible from the other methods.

3.2 Renaming

Identifiers can be uniformly renamed.

int a = 3;
a += 2;

is the same as

int myVar = 3;
myVar += 2;

We will use this example to discuss the scope:

class MyClass{
private int attribute;
public void SetAttribute(int attributeParameter){…}

}

MyClass, attribute, SetAttribute and attributeParameter can be changed, those are the identifiers in
this class.

3.3 Conventions

We can change all the identifiers in the classes if we want: class names, method names, etc. But it’s good to
have conventions.

“Hard” convention:

• Variable (including instance variables and parameters) names start with a lower case.
• Classes and Method names start with an upper case.
• You must be consistent.

Variations / Conventions for instances variables and argument names:

• mAttributes or _Attributes
• SetAttributes(int aAttribute), or (int value)
• Names of accessors are up to you.

3 / 4

September 12, 2020 PCP − Lecture 06

4 Named Constant

A constant is a variable whose value cannot change.

const int MONTHS = 12;
const double AVOGADRO = 6.0220e23; // Avogadro Number. Units 1/mol
const double PI = 3.14159265358979;
const double MILES_TO_KM = 1.60934;

• Value at to be fixed at declaration (= can only be initialized), and cannot change.
• Name is often ALL CAPS.

For instance, 𝜋 is defined in the Math class and can be accessed as follows:

Console.WriteLine(Math.PI);

5 Format Specifiers

We can use interpolation to display more nicely numerical values. There are four important format specifiers
in C#.

Format specifier Description

N or n Formats the string with a thousands separator and a default of two
decimal places.

E or e Formats the number using scientific notation with a default of six decimal
places.

C or c Formats the string as currency. Displays an appropriate currency symbol
($ in the U.S.) next to the number. Separates digits with an appropriate
separator character (comma in the U.S.) and sets the number of decimal

places to two by default.
P or p Print percentage

Console.WriteLine(
"\n" + $"{1234.567:N}" // 1,234.57

+ "\n" + $"{1234.5:N}" // 1,234.50
+ "\n" + $"{1234.567:E}" // 1.234567E+003
+ "\n" + $"{1234.567:C}" // $1,234.57
+ "\n" + $"{1234.5:C}" // $1,234.50
+ "\n" + $"{.5:P}" // 50.00%

);

4 / 4

	Last Time - Operations, conversions and reading from a user
	Unified Modeling Language
	More Methods for the Rectangle Class
	Variables and Methods Name and Conventions
	Variable Scope
	Time
	Space:

	Renaming
	Conventions

	Named Constant
	Format Specifiers

