PCP − Lecture 08
Fall 2020
Clément Aubert
September 24, 2020
[bookmark: X6097c2db43424f33b53c1d0a7bbc119185d7b0a]Last Time - UML, Methods, Scope, Conventions, Constants and Format Specifier
· A UML diagram is a convenient way to represent the “surface” of a class, that is, its description, without including the actual code.
· We revisited some methods for the Rectangle class, and enriched it with the ComputePerimeter or MultiplyRectangle methods.
· We defined the scope of a variable as the place in space and time where a variable can be accessed.
· We discussed some of the conventions on the naming of methods and variables.
· We studied the role and importance of constant variables.
· We saw how string interpolation could use format specifiers to display numerical information in a “formatted” way.
[bookmark: a-class-for-classroom]A Class for ClassRoom
[bookmark: uml---specification]UML - Specification
	ClassRoom

	- name: string

	- number: int

	+ SetName(nameParameter : string): void

	+ GetName(): string

	+ SetNumber(numberParameter: int): void

	+ GetNumber(): int

[bookmark: implementation]Implementation
using System;

class ClassRoom
{
 private string name;
 private int number;

 public void SetName(string nameParameter)
 {
 name = nameParameter;
 }
 public string GetName()
 {
 return name;
 }

 public void SetNumber(int numberParameter)
 {
 number = numberParameter;
 }
 public int GetNumber()
 {
 return number;
 }
}
[bookmark: default-values]Default Values
What if we display the values of the instance variables before setting them?
ClassRoom english = new ClassRoom();
Console.WriteLine(english.GetName()); // Nothing!
Console.WriteLine(english.GetNumber()); // 0
Indeed, instance variables are different from “usual” variables in that sense that they receive a “default” value when created. This value depends of the variable datatype:
	Type
	Default

	numerical value
	0

	char
	'\x0000'

	bool
	false

	string
	null

· Note how different it is from the variables we have been using so far, that could not be for instance displayed if their value had not been set.
· We can set a different default value, using, in the class declaration,
private string name = "Unknown";
private int number = -1;
[bookmark: constructors]Constructors
[bookmark: custom]Custom
A constructor is a method used to create an object. It has to have the same name as the class, and doesn’t have a return type.
public ClassRoom(string nameParameter, int numberParameter)
{
 name = nameParameter;
 number = numberParameter;
}
We use it as follows:
ClassRoom math = new ClassRoom("Bertrand", 5);
Note:
· the order of the arguments matter,
· the variables, as usual, have a particular scope,
· constructor do not have a return type (not even void)
In the UML diagram, we would add:
+ <<constructor>> ClassRoom(nameParameter: string, numberParameter: int)
Note that we could skip the <<constructor>> part, can you tell why?
[bookmark: default]Default
If we implement this constructor, then we lose the “No args”, default constructor
public ClassRoom() { }
We can re-define it, using something like:
public ClassRoom() {
 name = "Unknown";
 int = -1;
}
[bookmark: signature-and-overloading]Signature and Overloading
Every method has a signature made of - its name, - its parameters types (but not the parameter names).
Note that the return type is not part of the method signature in C#.
In a class, all the methods need to have a different signature. You cannot, for example, have these two methods in the same class:
int DoSomething(int a, int b);
string DoSomething(int c, int d);
It is possible, however, to have two methods with the same name, as long as they have different signatures. If we are in such a situation, then we say that we are overloading. We will look at examples of overloading in lab.
[bookmark: tostring]ToString
A particular method can be used to display information about our objects. It is called ToString, and can be defined as follows:
public override string ToString()
{
 return "Person: " + Name + " " + Age;
}
We will look at examples and usage in class and lab.
