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1 Arrays

1.1 Motivation

Arrays are collection, or grouping, of values held in a single place. They can store multiple values of the
same datatype, and are useful, for instance,

• When we want to store a collection of related values,
• When we don’t know in advance how many variables we need.

1.2 Declaration and Initialization of Arrays

Declaration and assignment

1 int[] myArray;
2 myArray = new int[3]; // 3 is the size declarator
3 // We can now store 3 ints in this array,
4 // at index 0, 1 and 2
5

6 myArray[0] = 10; // 0 is the subscript, or index
7 myArray[1] = 20;
8 myArray[2] = 30;
9

10 // the following would give an error:
11 //myArray[3] = 40;
12 // Unhandled Exception: System.IndexOutOfRangeException: Index was outside the bounds of

the array at Program.Main()↪

13 // "Array bound checking": happen at runtime.

As usual, we can combine declaration and assignment on one line:

1 int[] myArray = new int[3];

We can even initialize and give values on one line:

1 int[] myArray = new int[3] { 10, 20, 30 };

And that statement can be rewritten as any of the following:

1 int[] myArray = new int[] { 10, 20, 30 };
2 int[] myArray = new[] { 10, 20, 30 };
3 int[] myArray = { 10, 20, 30 };

But, we should be carefull, the following would cause an error:
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1 int[] myArray = new int[5];
2 myArray = { 1, 2 ,3, 4, 5}; // ERROR

If we use the shorter notation, we have to give the values at initialization, we cannot re-use this notation
once the array was created.

Other datatype, and even objects, can be stored in arrays:

1 string[] myArray = { "Bob", "Mom", "Train", "Console" };
2 Rectangle[] arrayOfRectangle = new Rectangle[5];

1.3 Custom Size and Values

1 Console.WriteLine("What is size of the array that you want?");
2 int size = int.Parse(Console.ReadLine());
3 int[] customArray = new int[size];

How can we fill it with values, since we do not know its size? Using iteration!

1 int counter = 0;
2 while (counter < size)
3 {
4 Console.WriteLine($"Enter the {counter + 1}th value");
5 customArray[counter] = int.Parse(Console.ReadLine());
6 counter++;
7 }

We can use length, a property of our array. That is, the integer value myArray.Length is the length (=
size) of the array, we can access it directly.

To display an array, we need to iterate as well (this time using the Length property):

1 int counter2 = 0;
2 while (counter2 < customArray.Length)
3 {
4 Console.WriteLine($"{counter2}: {customArray[counter2]}.");
5 counter2++;
6 }

1.4 Changing the Size

Array is actually a class, and it comes with methods!

1 Array.Resize(ref myArray, 4);
2 myArray[3] = 40;
3 Array.Resize(ref myArray, 2);

Resize shrinks (and content is lost) and extends (and store the default value, i.e., 0 for int, etc.)!
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2 For Loops

2.1 for Loops

1 int i = 0;
2 while (i <= 5)
3 {
4 Console.Write(i + " ");
5 i++;
6 }

1 int j = 0;
2 do
3 {
4 Console.Write(j + " ");
5 j++;
6 } while (j <= 5);

1 int k = 0;
2 for (k = 0; k <= 5; k++)
3 {
4 Console.Write(k + "");
5 }

1 for (int l = 0; l <= 5; l++)
2 {
3 Console.Write(l + "");
4 }

Structure : initialization / condition / update

2.2 Ways Things Can Go Wrong

Don’t:

• Increment the counter in the body of the for loop!
• Assume that a variable declared in the header of a for loop will be accessible in the rest of the code. /

Use for if you want to use the counter for anything else.
• Declare the variable twice.

2.3 For loops With Arrays

for loops actually go very well with arrays:

1 for (int i = 0; i < size; i++)
2 {
3 Console.WriteLine($"Enter the {i + 1}th value");
4 customArray[i] = int.Parse(Console.ReadLine());
5 }
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Remember that we can use the Length property of our array. The previous code could become (only the
first line changed):

1 for (int i = 0; i < customArray.Length; i++)
2 {
3 Console.WriteLine($"Enter the {i + 1}th value");
4 customArray[i] = int.Parse(Console.ReadLine());
5 }

2.4 Nested Loops

Of course, exactly as we could nest if statements, we can nest looping structures!

1 for (int o = 0; o < 11; o++)
2 {
3 for (int p = 0; p < 11; p++)
4 Console.Write($"{o} × {p} = {o * p} \t ");
5 Console.Write();
6 }

2.5 Mixing Control Flows

And we can use if statements in the body of for loops:

1 for (int m = 0; m < 10; m++)
2 {
3 if (m % 2 == 0) Console.WriteLine("This is my turn.");
4 else Console.WriteLine("This is your turn.");
5 }

2.6 Iterations

There is another, close, structrure that allows to iterate over the elements of an array, but can only access
them, not change their values (they are “read only”).

1 for (int i = 0; i < myArray.Length; i++)
2 Console.Write(myArray[i] + " ");
3

4 foreach (int i in myArray) // "Read only"
5 Console.Write(i + " ");

Diffference is w.r.t. to modifying the array “read Vs write”. Having i = 2 in the foreach would cause an
error!

That last structure is given for the sake of completeness, but it’s ok if you’d rather not use it.
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