
T (A) & R (B) E-152 1000 → 1115 // N-344 1130 → 1220 // E 365 1300 → 1350

PCP − Lecture 10
Fall 2020 October 8, 2020

Last Time - Introducing Decision Structures

• We saw that iteration and selection had in common to “break” the sequential flow of execution, and
needed decisions to work.

• Decisions are implemented using boolean variables, and operators such as &&, || and !.
• Expression, that evaluates to boolean, can test for equality using ==, inequality using !=, and for order

using >, <, >= and <=.
• if statement allows to implement the selection procedure, so that we can “skip” over parts of code.
• if-else statements use that boolean are always either true or false to execute one among two blocks

of code.
• if and if-else statements can be nested.

1 if-else-if Statements

1 if (<condition 1>)
2 {
3 <statement block 1> // Executed if condition 1 is true
4 }
5 else if (<condition 2>)
6 {
7 <statement block 2> // Executed if condition 1 is false and condition 2 is true
8 }
9 ...

10 else if (<condition N>)
11 {
12 <statement block N> // Executed if all the previous conditions are false and

condition N is true↪

13 }
14 else
15 {
16 <statement block N+1> // Executed if all the conditions are false
17 }

Note that the conditions could be really different, not even testing the same thing!

1.1 Example

We can make an example with really different conditions, not overlaping:

1 / 6

October 8, 2020 PCP − Lecture 10

1 if (age > 12)
2 x = 0;
3 else if (charVar == 'c')
4 x = 1;
5 else if (boolFlag)
6 x = 2;
7 else
8 x = 3;

Try to give various values to age, charVar and boolFlag, and see which value would x get in each case.

2 Boolean Flags

Remember that a boolean flag is a boolean variable? We can use it to “store” the result of an interaction
with a user.

Assume we want to know if the user work full time at some place, we could get started with:

1 Console.WriteLine("Do you work full-time here?");
2 char ch = Console.ReadKey().KeyChar; // Note that here, passing by, we are using a new

method, to read characters.↪

3

4 if (ch == 'y' || ch == 'Y')
5 Console.WriteLine("Answered Yes");
6 else if (ch == 'n' || ch == 'N')
7 Console.WriteLine("Answered No");
8 else
9 Console.WriteLine("Said what?");

But we can’t accomodate this 3-party situation (you either work here full-time, or you don’t), so we can
change the behaviour to

1 if (ch == 'y' || ch == 'Y')
2 Console.WriteLine("Answered Yes");
3 else
4 Console.WriteLine("Answered No");

We’ll study user input validation, that allows to get better answers from the users, later on.

But imagine we are at the beginnig of a long form, and we will need to re-use that information multiple
times. With this previous command, we would need to duplicate all our code in two places. Instead, we
could “save” the result of our test in a boolean variable, like so:

1 bool fullTime;
2 if (ch == 'y' || ch == 'Y')
3 fullTime = true;
4 else
5 fullTime = false;

If you looked at the ? operator in lab, you can even shorten that statement to:

1 fullTime = (ch == 'y' || ch == 'Y') ? true : false;

2 / 6

October 8, 2020 PCP − Lecture 10

Why stop here? We could even do

1 fullTime = (ch == 'y' || ch == 'Y');

Tada! We went from a long, convoluted code, to a very simple line! We already did this trick last time, but
I thought that seeing it again would help.

3 Constructing a Value Progressively

In lab, last time, you were asked the following:

Ask the user for an integer, and display on the screen “positive and odd” if the number is positive
and odd, “positive and even” if the number is positive and even, “negative and odd” if the number
is negative and odd, “negative and even” if the number is negative and even, and “You picked 0”
if the number is 0.

A possible anwer is:

1 int a;
2 Console.WriteLine("Enter an integer");
3 a = int.Parse(Console.ReadLine());
4 if (a >= 0)
5 {
6 if (a % 2 == 0)
7 Console.WriteLine("Positive and even");
8 else // if (a % 2 != 0)
9 Console.WriteLine("Positive and odd");

10 }
11 else
12 {
13 if (a % 2 == 0)
14 Console.WriteLine("Negative and even");
15 else
16 Console.WriteLine("Negative and odd");
17 }

That is a lot of repetition! We could actually construct “progressively” the message we will be displaying:

1 string msg;
2 if (a >= 0)
3 {
4 msg = "Positive";
5 }
6 else
7 {
8 msg = "Negative";
9 }

10 if (a % 2 == 0)
11 msg += " and even";
12 else // if (a % 2 != 0)
13 msg += " and odd";

3 / 6

October 8, 2020 PCP − Lecture 10

Much better! Since the two conditions are actually independant, we can test them in two different if
statements!

4 Switch Statements

switch statements allow to simplify the “matching” of a value against a pre-determined set of values. Its
formal syntax is as follows:

1 switch (<variable name>)
2 {
3 case (<literral 1>):
4 <statement block 1>
5 break;
6 case (<literal 2>):
7 <statement block 2>
8 break;
9 ...

10 default:
11 <statement block n>
12 break;
13 }

The (…) are mandatory, the {…} are optional.

• All the literals need to be different.
• The literal and the variable have to be of the same type.
• You can’t have case(<variable name>)

For instance, imagine we want to go from a month’s number to its name. We could do that with an if…else
if …:

1 int month = 11;
2 string monthname;
3 if (month == 1) monthname = "January";
4 else if (month == 2) monthname = "February";
5 // ...
6 else if (month == 12) monthname = "December";
7 else monthname = "Error!";

But since we know that “month” will be a value between 1 and 12, or else we have an error, we could also
have:

1 switch (month)
2 {
3 case (1):
4 monthname = "January";
5 break;
6 case (2):
7 monthname = "February";
8 break;

4 / 6

October 8, 2020 PCP − Lecture 10

9 // ..
10 case (12):
11 monthname = "December";
12 break;
13 default:
14 monthname = "Error!";
15 break;
16 }

Another example, to match a section letter against 4 possibilities, where two actually result in the same
behaviour:

1 char section = 'c';
2 string meet;
3 switch (section)
4 {
5 case ('a'):
6 meet = "MW 1-2PM";
7 break;
8 case ('b'):
9 meet = "TT 1-2PM";

10 break;
11 case ('c'):
12 case ('d'):
13 // case ('a'): Would not compile!
14 meet = "F 2-4PM";
15 break;
16 default:
17 meet = "Invalid code";
18 break;
19 }

5 Combining Methods and Decision Structures

Note that we can have a decision structure inside a method! If we were to re-visit the Rectangle class, we
could have a constructor of the following type:

1 public Rectangle(int wP, int lP)
2 {
3 if (wP <= 0 || lP <= 0)
4 {
5 Console.WriteLine("Invalid Data, setting everything to 0");
6 width = 0;
7 length = 0;
8 }
9 else

10 {
11 width = wP;
12 length = lP;

5 / 6

October 8, 2020 PCP − Lecture 10

13 }
14 }

6 / 6

	Last Time - Introducing Decision Structures
	if-else-if Statements
	Example

	Boolean Flags
	Constructing a Value Progressively
	Switch Statements
	Combining Methods and Decision Structures

