
T (A) & R (B) E-152 1000 → 1115 // N-344 1130 → 1220 // E 365 1300 → 1350

PCP − Lecture 14
Fall 2020 November 6, 2020

1 Arrays

1.1 Motivation

Arrays are collection, or grouping, of values held in a single place. They can store multiple values of the
same datatype, and are useful, for instance,

• When we want to store a collection of related values,
• When we don’t know in advance how many variables we need.

1.2 Declaration and Initialization of Arrays

Declaration and assignment

1 int[] myArray;
2 myArray = new int[3]; // 3 is the size declarator
3 // We can now store 3 ints in this array,
4 // at index 0, 1 and 2
5

6 myArray[0] = 10; // 0 is the subscript, or index
7 myArray[1] = 20;
8 myArray[2] = 30;
9

10 // the following would give an error:
11 //myArray[3] = 40;
12 // Unhandled Exception: System.IndexOutOfRangeException: Index was outside the bounds of

the array at Program.Main()↪

13 // "Array bound checking": happen at runtime.

As usual, we can combine declaration and assignment on one line:

1 int[] myArray = new int[3];

We can even initialize and give values on one line:

1 int[] myArray = new int[3] { 10, 20, 30 };

And that statement can be rewritten as any of the following:

1 int[] myArray = new int[] { 10, 20, 30 };
2 int[] myArray = new[] { 10, 20, 30 };
3 int[] myArray = { 10, 20, 30 };

But, we should be carefull, the following would cause an error:

1 / 4



November 6, 2020 PCP − Lecture 14

1 int[] myArray = new int[5];
2 myArray = { 1, 2 ,3, 4, 5}; // ERROR

If we use the shorter notation, we have to give the values at initialization, we cannot re-use this notation
once the array was created.

Other datatype, and even objects, can be stored in arrays:

1 string[] myArray = { "Bob", "Mom", "Train", "Console" };
2 Rectangle[] arrayOfRectangle = new Rectangle[5];

1.3 Custom Size and Values

1 Console.WriteLine("What is size of the array that you want?");
2 int size = int.Parse(Console.ReadLine());
3 int[] customArray = new int[size];

How can we fill it with values, since we do not know its size? Using iteration!

1 int counter = 0;
2 while (counter < size)
3 {
4 Console.WriteLine($"Enter the {counter + 1}th value");
5 customArray[counter] = int.Parse(Console.ReadLine());
6 counter++;
7 }

We can use length, a property of our array. That is, the integer value myArray.Length is the length (=
size) of the array, we can access it directly.

To display an array, we need to iterate as well (this time using the Length property):

1 int counter2 = 0;
2 while (counter2 < customArray.Length)
3 {
4 Console.WriteLine($"{counter2}: {customArray[counter2]}.");
5 counter2++;
6 }

1.4 Changing the Size

Array is actually a class, and it comes with methods!

1 Array.Resize(ref myArray, 4);
2 myArray[3] = 40;
3 Array.Resize(ref myArray, 2);

Resize shrinks (and content is lost) and extends (and store the default value, i.e., 0 for int, etc.)!

2 / 4



November 6, 2020 PCP − Lecture 14

2 For Loops

2.1 for Loops

1 int i = 0;
2 while (i <= 5)
3 {
4 Console.Write(i + " ");
5 i++;
6 }

1 int j = 0;
2 do
3 {
4 Console.Write(j + " ");
5 j++;
6 } while (j <= 5);

1 int k = 0;
2 for (k = 0; k <= 5; k++)
3 {
4 Console.Write(k + "");
5 }

1 for (int l = 0; l <= 5; l++)
2 {
3 Console.Write(l + "");
4 }

Structure : initialization / condition / update

2.2 Ways Things Can Go Wrong

Don’t:

• Increment the counter in the body of the for loop!
• Assume that a variable declared in the header of a for loop will be accessible in the rest of the code. /

Use for if you want to use the counter for anything else.
• Declare the variable twice.

2.3 For loops With Arrays

for loops actually go very well with arrays:

1 for (int i = 0; i < size; i++)
2 {
3 Console.WriteLine($"Enter the {i + 1}th value");
4 customArray[i] = int.Parse(Console.ReadLine());
5 }

3 / 4



November 6, 2020 PCP − Lecture 14

Remember that we can use the Length property of our array. The previous code could become (only the
first line changed):

1 for (int i = 0; i < customArray.Length; i++)
2 {
3 Console.WriteLine($"Enter the {i + 1}th value");
4 customArray[i] = int.Parse(Console.ReadLine());
5 }

2.4 Nested Loops

Of course, exactly as we could nest if statements, we can nest looping structures!

1 for (int o = 0; o < 11; o++)
2 {
3 for (int p = 0; p < 11; p++)
4 Console.Write($"{o} × {p} = {o * p} \t ");
5 Console.Write();
6 }

2.5 Mixing Control Flows

And we can use if statements in the body of for loops:

1 for (int m = 0; m < 10; m++)
2 {
3 if (m % 2 == 0) Console.WriteLine("This is my turn.");
4 else Console.WriteLine("This is your turn.");
5 }

2.6 Iterations

There is another, close, structrure that allows to iterate over the elements of an array, but can only access
them, not change their values (they are “read only”).

1 for (int i = 0; i < myArray.Length; i++)
2 Console.Write(myArray[i] + " ");
3

4 foreach (int i in myArray) // "Read only"
5 Console.Write(i + " ");

Diffference is w.r.t. to modifying the array “read Vs write”. Having i = 2 in the foreach would cause an
error!

That last structure is given for the sake of completeness, but it’s ok if you’d rather not use it.

4 / 4


	Arrays
	Motivation
	Declaration and Initialization of Arrays
	Custom Size and Values
	Changing the Size

	For Loops
	for Loops
	Ways Things Can Go Wrong
	For loops With Arrays
	Nested Loops
	Mixing Control Flows
	Iterations


