CSCI 1301 – Lab 14
Clément Aubert
November 6, 2020
[bookmark: first-array-manipulation]First Array Manipulation
Write a program that
1. declares an array myArray of int of size ,
1. intitializes myArray with the values , , , and ,
1. displays the content of myArray.
Now, let us write incorrect statements. Add the following statements one by one to your program, observe how C# react (that is, try to compile and execute after you added one, then remove it), and answer the following questions.
myArray = { 1, 2 ,3, 4, 5};
Console.WriteLine(myArray[5]);
myArray[5] = 12;
Console.WriteLine(myArray);
· One of this statement is not “incorrect” in the sense that it won’t prevent your program from executing, but it is not doing what you could have expected: which one?
· Can you read and understand the errors messages you obtained for the others?
[bookmark: second-array-manipulation]Second Array Manipulation
Write a program that
1. declares an array myArray of int of size ,
1. intitializes myArray with the values , , , …, and ,
1. displays the content of myArray.
1. sum the values stored in myArray and display the result.
1. make the product of the values stored in myArray and display the result.
[bookmark: from-while-to-for]From while to for
Rewrite the following while (or do...while) loops as for loops.
int a = 0;
while (a != 10)
{
 Console.WriteLine(a);
 a++;
}
int b = 3;
while (b >= -2)
{
 Console.WriteLine(b);
 b -= 2;
}
int c = 10;
while(c <= 100) {
 Console.WriteLine(c);
 c += 10;
}
int d = 1;
do
{
 Console.WriteLine(d);
 d *= 2;
} while (d <= 100);
[bookmark: from-for-to-while]From for to while
Rewrite the following for loops as while loops:
for (int e = 10; e <= 100; e += 10) Console.Write(e + " ");
for (double f = 150; f > 2; f/=2) Console.Write(f + " ");
for (int h = 0; h > -30; h -= 1) Console.Write(h + " ");
[bookmark: pushing-further-optional]Pushing Further (Optional)
This lab’s pushing further is about two modifications of for loops that are sometimes considered as bad design: used poorly, they can make the code harder to read, to debug, and sometimes makes it hard to follow the flow of control of your program. They are introduced because you may see them in your future, but, except for rare cases, should be avoided completely.
[bookmark: multiple-initializations-and-updates]Multiple Initializations and Updates
The exact structure of for loops is actually more complex than what we discussed in class. It is
for(<initializations>; <condition>; <updates>)
{
 <statement block>
}
That is, there can be more than one initialization (but only if the variables all have the same datatype) and more than one update. That is, are legal statements like:
for(int z = 0, y = 10; z < y ; z++){ Console.WriteLine($"{z} + {y} = {z+y}"); }
or
for (int x = 0, y = 12 ; x != y; x++, y--)
 Console.WriteLine($"The difference between {x} and {y} is {x - y}");
Also, the initialization, as well as the update condition, are actually optional: we could have
int w = 0;
for (; w < 5; w++) { Console.WriteLine(w); }
and
for(int r = 10; r > 0;) { Console.WriteLine(r--); }
Try to rewrite the four for loops just given as four for loops with exactly one initialization and one update in the header of the for loop.
[bookmark: continue-and-break]continue and break
Programmers can use two keywords in loops, continue and break, that modify the control flow. Looking at the following code, try to understand what those statements do.
for (int i = 1; i <= 5; i++)
{
 if (i == 3) continue;
 Console.Write(i + " ");
}
for (int i = 1; i <= 5; i++)
{
 if (i == 3) break;
 Console.Write(i + " ");
}
You can also use break and continue in while loops. Try to rewrite the previous two for as while loops: there is a trick to make the while loop using break works properly, can you spot it?
[bookmark: default-values]Default values
Execute the following:
int[] ar = new int[5];
ar[0] = 5;
for (int i = 0; i < ar.Length; i++)
 Console.WriteLine(ar[i]);
What can you conclude about the value of the cells that were not assigned?
