Unified Modeling Language

Plan:

1. Overview
2. Types of Diagrams
3. Zoom on Classes Diagrams

Overview

One approach for analysis, design, implementation and deployment of databases and their appli-
cations. Databases interact with multiple softwares and users, we need a common language.
Unified Modeling Language (http://uml.org) is a standard:

» Generic
» Language-independent
« Platform-independent

Wide, powerful, but also intimidating.

You know UML from object-oriented programming language:

—

Rec tai/j Pe Clan Vame

T 4
|

,Pe-\,y H\ ollouwe, AT{!:/%%
W:{,\\\n : doulvpc Cobe

7N

3“63} (OMQ D) mid o elendts |yt duold
Gl) o]

Cory\l}u& Avm () : O(ﬂL/(;’QL
: He Lt L//

http://uml.org

That’s a class diagram, there are other types of diagrams, they are not unrelated! For instance,
using communication diagrams, deployment diagrams, and state chart diagrams, you can collect
the requirements needed to draw a class diagram! They each offer a viewpoint on a software that
will help you in making sure the various pieces will fit together: it is a tool commonly used in
software engineering, and useful in database design.

Types of Diagrams

There are 14 different types of diagrams, divided between two categories: structural and behav-
ioral.

Diagram
I I
Behaviour Structure
Diagram Diagram
I I I I [
Activity Stat_e Class Component Object
Diagram Machine Diagram Diagram Diagram
Diagram
Interaction Use Case Composite Deployment Package Profile
Diagram Diagram Structure Diagram Diagram Diagram
% Diagram
[[[|
Communication Interaction Sequence Timing
Diagram Overview Diagram Diagram Notation: UML
Diagram

Structural UML diagrams

They describe structural, or static, relationships between objects, softwares.

« Class diagram describes static structures: classes, interfaces, collaborations, dependencies,
generalizations, etc. We can represent conceptual data base schema with them!

+ Object diagram, a.k.a. instance diagram, represents the static view of a system at a particular
time. You can think of a “freeze” of a program, to be able to observe the value of the
variables and the objects (or instances) created.

« Component diagram describes the organization and the dependencies among software com-

ponents (e.g., executables, files, libraries, etc.), to describe how an arbitrary large software
system is split into pieces.

« Deployment diagram is the description of the physical deployment of artifacts (i.e., software
components) on nodes (i.e., hardware). If your program runs on a local computer, fetching
data from the Internet, and storing output on a server, you may describe this situation using
this sort of diagram.

In this category also exist Composite structure diagram, Package diagram and Profile diagram.

Behavioral UML diagrams

They describe the behavioral, or dynamic, relationship, between components.

« Use case diagram describes the interaction between the user and the system. Supposedly, it
is the privileged tool to communicate with end-users.

« State machine diagram, a.k.a., state chart diagram, describes how a system react to external
events. You can picture yourself a complex form of finite state automata diagram.

« Activity diagram is a flow of control between activities. You may have seen them already,
they are supposedly easy to follow:

[ue '[uﬂﬁ'hou..]
— |\ Iw

C 7uc‘> t'D"t:] O

]

Auswer = L) o

Then there is the sub-category of “Interaction diagrams”:

+ Sequence diagram describes the interactions between objects over time, the flow of informa-
tion or messages between objects. It is helpful to grasp the time ordering of the interactions.

« Communication diagram, a.k.a., collaboration diagram, describes the interactions between
objects as a serie of sequenced messages. It is helpful to grasp the structure of the objects,
who is interacting with who.

This sub-category also comprise Timing diagram and Interaction overview diagram.

Zoom on Classes Diagrams

Looking at the “COMPANY conceptual schema in UML class diagram notation”, and comparing
it with the “ER schema diagram for the COMPANY database” from the textbook, can help you in
writing your own “Rosetta Stone” between ER and UML diagram. Let us introduce some UML
terminology for the class diagrams.

UML ER

Class Entity Type

Class Name Entity Name

Attributes Attributes

Operations (or Method) Sometimes Derived Attributes
Association Relationship Type

Link Relationship Instance
Multiplicities Structural Constraint

As well as for ER diagram, the domain (or data type) of the attributes is optional. A composite
attribute in a ER diagram can be interpreted as a structured domain in a UML diagram (think of
a struct), and a multi-valued attribute requires to create a new class.

Associations are, to some extend, more expressive than relationship types:

« As for relationship types, they can be recursive (or reflexive), and uses role names to clarify
the roles of both parties.

« As for relationship types they can have attributes: actually, a whole class can be connected
to an association.

« As for relationship types, they can express a cardinality constraint on the relation between
classes. They are written as min .. max, with * for “no maximum”, and the following
shorthands: * stands for 0. .* and 1 stands for 1..1. An association with 1 on one side
and * on the other (resp. 1 and 1, * and 1, * and *) is sometimes called “one-to-many”
(resp., “one-to-one”, “many-to-one”, “many-to-many”). The notation in partially inverted
w.r.t. ER diagrams:

. ' | PLACE ’
| Pace V‘?‘L’”-“l
7 '

TS -
O 0

+ As opposed to the relationship types, they can have a direction, indicating that the user
should be able to navigate them only in one direction, or in two (which is the default). This
is used for security or privacy purposes.

+ As opposed to the relationship types, they come in various flavors:

- You can express aggregation, ak.a. “is part of” relationship, between a whole object
and its component (that have their own existence).

- You can express composition, which is the particular case of aggregation where the
component doesn’t have an existence of their own.

- You can express generalization, ak.a. inheritance, that eliminates redundancy and
makes a class a specialization of another one.

« As opposed to the relationship types, they can be qualified, implying that a class is not con-
nected to the other class as a whole, but to one particular attribute, called the qualifier, or
discriminator.

This last feature can be used for weak entities, but not only.

Passengers
n“*
i e
Association Directed Reflexive Multiplicit}f
Asscoation Assciation
Library Library Fixed Account Printer
]
1
1.% 1
Books Books Bank Account Printer Setup
Aggregation Composition Inheritance Realization

Some of those subtleties depend on your need, and are subjective, but are important tool to design

properly a database, and relieving the programmer from the burden of figuring out many details.
Sources:

« https://en.wikipedia.org/wiki/Unified_Modeling_Language
« https://creately.com/blog/diagrams/class-diagram-relationships/
« Section 3.8 (7th Edition) or 7.8 (6th Edition) of your textbook.

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://creately.com/blog/diagrams/class-diagram-relationships/

	Unified Modeling Language
	Overview
	Types of Diagrams
	Structural UML diagrams
	Behavioral UML diagrams

	Zoom on Classes Diagrams

