
CSCI 1301 - Lab 08

Clément Aubert

January 30, 2018

Dependencies: This lab has only one part.

Feature of the day: I recommend you activate word-wrap in VS. Refer to https://msdn.microsoft.com/en-
us/library/ms165339.aspx (VS 2015) or https://docs.microsoft.com/en-us/visualstudio/ide/reference/how-
to-manage-word-wrap-in-the-editor (VS 2017), to go from

to

Tu., 30th January spots.augusta.edu/caubert/pcp/ Page 1 of 3

https://msdn.microsoft.com/en-us/library/ms165339.aspx
https://msdn.microsoft.com/en-us/library/ms165339.aspx
https://docs.microsoft.com/en-us/visualstudio/ide/reference/how-to-manage-word-wrap-in-the-editor
https://docs.microsoft.com/en-us/visualstudio/ide/reference/how-to-manage-word-wrap-in-the-editor
http://spots.augusta.edu/caubert/pcp/


Lab 08 CSCI 1301 - Principles of Computer Programming I–Spring 2018

See the difference? The horizontal scrolling disappeared, every line that is too long is “wrapped”, and this
is indicated with the sign.

Part 0 - Project #1 Solution

Make sure you understand the grading scale and my annotations. If you want to look at one possible
solution, download this project. Make sure you extract it before opening it in VS.

Part I - Using a Pre-Defined Class

Manipulating Two .cs Files at a Time

a. Download the Rectangle project, extract it, and open it with VS. Note that in the “Solution Explorer”,
there are two cs files listed: Program.cs and Rectangle.cs.

b. In the Solution Explorer, double-click on Rectangle.cs, and note how close it is from what was
presented during the lecture.

c. In the Solution Explorer, double-click on Program.cs, and observe it.
d. Compile and execute the code.
e. Now, do the following:

• Introduce a syntactical error in Program.cs (e.g., remove a ;), and try to build the solution: what do
you observe? Restore the program to its previous state, using CTRL + z to “undo” your operation.

• Introduce a syntactical error in Rectangle.cs (e.g., remove a ;), and try to build the solution: what
do you observe? Undo the modification using CTRL + z.

• Add length = 12; in the main method of Program.cs and try to build the solution: what do you
observe? Undo the modification using CTRL + z.

Enriching Program.cs

Edit the Main method of Program.cs by adding at its end statements that perform the following:

1. Create a second Rectangle object and set its length to 3 and its width to 3.
2. Create a third Rectangle object, and ask the user to specify its length and width. Print the area of

the rectangle whose dimensions were given by the user.
3. Create a fourth Rectangle object, do not specify its length or width, and print them. What do you

observe?

In the last exercise, you may notice that the length and the width of the newly created object were as-
signed default values. To know more about this, refer to https://docs.microsoft.com/en-us/dotnet/csharp/
language-reference/keywords/default-values-table.

Tu., 30th January spots.augusta.edu/caubert/pcp/ Page 2 of 3

Aubert_Clement.zip
Rectangle.zip
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/default-values-table
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/default-values-table
http://spots.augusta.edu/caubert/pcp/


Lab 08 CSCI 1301 - Principles of Computer Programming I–Spring 2018

Editing Rectangle.cs

Edit Rectangle.cs:

1. Rename uniformly lengthParameter to lengthP in the SetLength method (that is, replace the two
occurrences). Compile and run your program, what do you observe?

2. Some people use the convention of prefixing instance variables with _ (the underscore character),
m (for “member”), or even m_. You will always find someone furiously advocating for one particular
convention, the truth is that if you’re not forced to use one, you should pick whichever suits you
best. Still, just to use it at least once, rename uniformly width into m_width and see how it feels.
Compile and run your program, what do you observe? Either undo this modification, or rename
length into m_length (you have to be consistent!).

3. Change the name of one of the accessor method in Rectangle.cswithout changing it in Program.cs.
Compile and run your program, what do you observe? Undo your modification.

Enriching Rectangle.cs

By taking inspiration from the CalculateAre() method, write three new methods:

a. A method that returns the perimeter of the calling object.
b. A method that double the heigt and the width of the calling object.
c. A method that swap the height and the width of the calling object.

For each method, pick a (valid) name, think about the return type and the parameters, and write the body
of the method carefully. After compliation succeed, call that method in Program.cs and see if it has the
expected behaviour.

Part II (Optional) - Pushing Further

The following are two independent tasks, to widen your understanding of this class, and to prepare you
for the next labs.

a. Go back to the problem from the previous lab (that is, Lab 7, Part II). Change your program so that:

• The user can decide how many slices he wants to cut in every pizza,
• The program prints the number of slices per guest without fraction, and the number of remaining
slices.

For instance, a user entering 4 guests and 2 pizzas to be cut in 8 slices should read that every member of
the party will have ⌊(2 × 8)/(4 + 1)⌋ = 3 slices, and that (2 × 8)𝑚𝑜𝑑(4 + 1) = 1 slice will be left.

b. Properties are introduced in Section 4.6 of your textbook, and at https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/classes-and-structs/properties in the documentation. Have
a look at both, and open the project Account2.sln in the ch04/Account2/ folder of the source code
of the textbook. Properties will not be introduced in this class, but if you feel confident enough to
use them, feel free to do so.

Tu., 30th January spots.augusta.edu/caubert/pcp/ Page 3 of 3

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
http://spots.augusta.edu/caubert/pcp/

	Part 0 - Project #1 Solution
	Part I - Using a Pre-Defined Class
	Manipulating Two .cs Files at a Time
	Enriching Program.cs
	Editing Rectangle.cs
	Enriching Rectangle.cs

	Part II (Optional) - Pushing Further

