
CSCI 1301 - Lab 09

Clément Aubert

February 1, 2018

Deadlines: This lab needs to be completed before taking Lab 10, and is critical to complete Project #2.

Dependencies: Part I is about finishing Lab 8, and it is recommended that you complete this part before
starting Part II.

Part 0 - Get YourQuiz Back

If time allows, I’ll grade your quiz and make personal feedback during the lab. If not, you’ll have it back
next Tuesday, and are encouraged to meet with me if something isn’t clear.

Part I - Finishing Lab 8

Go back to Lab 8 and make sure you properly “enriched” Rectangle.cs. Are the headers correct, i.e., those
studied in class? Make sure you implemented them correctly, and test them. Once you completed that,
implement the MultiplyRectanglemethod we saw in class, whose header is public void MultiplyRect-
angle(int factor).

Part II - Writing Your Own Class

In this exercise, you will create your own first class instead of using and expanding one that was written
for you. The idea is to take inspiration from the class you already know (Rectangle) to create a new
class, called PreciseRectangle, that will manipulate rectangles whose width and length are floating-point
values, instead of integers (as in Rectangle).

Conception

Draw the UML diagram of this class: it should have two attributes, of type double, and five methods: two
setters, two getters (i.e., one for each attribute), and one method to compute the area of a precise rectangle.

Th., 1st February spots.augusta.edu/caubert/pcp/ Page 1 of 3

index.html#part-i---finishing-lab-8
http://spots.augusta.edu/caubert/pcp/


Lab 09 CSCI 1301 - Principles of Computer Programming I–Spring 2018

Implementation

To implement your method in VS, I explain two methods below: you can edit the pre-existing project, or
start “fresh”. I recommend that you pick the one you feel the most comfortable with, and then try the
other one.

Edit the Pre-Existing Project

a. Re-download the Rectangle project, extract it in a folder, open it with VS.
b. Re-name the project to “PreciseRectangle”, rename the “Rectangle.cs” file to “PreciseRectangle.cs”
c. In the “PreciseRectangle.cs” file, replace class Rectangle with class PreciseRectangle.
d. Comment out the body of the Main method in “Program.cs”.
e. Your program should compile as it is, but you have to edit PreciseRectangle.cs to now store the

width and the length with double, and to propagate this change accordingly. What should be the
return type of GetWidth, for instance?

f. Declare and manipulate rectangles with floating-point values for the width and the length in the
Main method, and make sure they behave as expected (can you compute the area, for instance?).

Starting From Scratch

a. Create a new project in VS, name it “PreciseRectangle”.
b. In the Solution Explorer, right-click on “PreciseRectangle”, then on “Add…” and select “Class”. Then,

select “Class”, write “PreciseRectangle.cs” as the name of the file, and click on “Add”.
c. You are now suppose to have two .cs files opened and displayed in the Solution Explorer: “Pro-

gram.cs” and “PreciseRectangle.cs”.
d. Implement the PreciseRectangle class according to your UML diagram.
e. Declare and manipulate rectangles with floating-point values for the width and the length in the

Main method, and make sure they behave as expected (can you compute the area, for instance?).

Part III (Optional) - Pushing Further

The following are two independent tasks, to widen your understanding of this class, and to prepare you
for the next labs.

a. Class diagram (the one we will be using) are just a special case of UML diagram. Have a look at
https://en.wikipedia.org/wiki/Unified_Modeling_Language#Diagrams: in which category are class
diagram, behaviour, or structure diagram? Have a look at https://en.wikipedia.org/wiki/Activity_
diagram and try to read the example of activity diagram for a guided brainstorming process.

b. Now that you know more about naming convention, have a look at https://docs.microsoft.com/en-
us/dotnet/standard/design-guidelines/naming-guidelines, and particularly at

• https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/general-naming-conventions

Th., 1st February spots.augusta.edu/caubert/pcp/ Page 2 of 3

../08/Rectangle.zip
https://en.wikipedia.org/wiki/Unified_Modeling_Language#Diagrams
https://en.wikipedia.org/wiki/Activity_diagram
https://en.wikipedia.org/wiki/Activity_diagram
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/general-naming-conventions
http://spots.augusta.edu/caubert/pcp/


Lab 09 CSCI 1301 - Principles of Computer Programming I–Spring 2018

• https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions

Th., 1st February spots.augusta.edu/caubert/pcp/ Page 3 of 3

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions
http://spots.augusta.edu/caubert/pcp/

	Part 0 - Get Your Quiz Back
	Part I - Finishing Lab 8
	Part II - Writing Your Own Class
	Conception
	Implementation
	Edit the Pre-Existing Project
	Starting From Scratch


	Part III (Optional) - Pushing Further

