
Homework #6 CSCI 3271 - Operating System I – Fall 2017

Please read 5.1 to 5.7 of the textbook and then answer the following, trying not to look at your notes or at the
textbook. Quiz #6, on Thursday 15th November, will consist exclusively of questions taken from the Part I of this
homework.

Part I — Short Questions

Question 1
Briefly define what a critical section is.

Question 2
Briefly define what a race condition is.

Question 3
What is starvation? How is it different from deadlock?

Question 4
What is memory ordering? What is its purpose?

Question 5
What is an atomic instruction? When is it useful?

Question 6
Name one difference between test_and_set and compare_and_swap.

Question 7
Discuss a situation where it is actually desirable to have a process “busy waiting” for a ressource to be accessible.

Question 8
What are the three operations one can perform on a semaphore?

Question 9
What is the purpose of the preempt_disable(); instruction?

Question 10
What is priority inheritance? Why is it useful?

Question 11
What are the benefits of nonpreemptive kernels?

m

Thursday 2nd November spots.augusta.edu/caubert/os/ Page 1 of 3

http://spots.augusta.edu/caubert/os/


Homework #6 CSCI 3271 - Operating System I – Fall 2017

Part II — Problem

There is only one problem this time: it requires a computer and it is rather lengthy. As usual, I’ll assume that you
will have successfully completed it by the time Homework #7 is released (Thursday 15th November), but you
probably want to look at it before the exam to increase your chances of success.

1 #include<stdio.h>
2 #include<pthread.h>
3 #include<stdlib.h>
4 #include<unistd.h>
5

6 pthread_t tid[2];
7

8 pthread_mutex_t lock;
9

10 void* task1(void *arg)
11 {
12 pthread_t ttid = pthread_self();
13 printf("\n Thread %08x started\n", ttid );
14 pthread_mutex_lock(&lock);
15 printf("\n Thread %08x performs critical section\n", ttid );
16 sleep(1);
17 printf("\n Thread %08x is about to be done with its critical

section\n", ttid );ãÑ

18 pthread_mutex_unlock(&lock);
19 printf("\n Thread %08x finished\n", ttid);
20 pthread_exit(0);
21 }
22

23 int main(void)
24 {
25 pthread_mutex_init(&lock, NULL);
26

27 pthread_create(&(tid[0]), NULL, &task1, NULL);
28 pthread_create(&(tid[1]), NULL, &task1, NULL);
29

30 pthread_join(tid[0], NULL);
31 pthread_join(tid[1], NULL);
32

33 pthread_mutex_destroy(&lock);
34

35 exit(0);
36 }

Listing 1: mutex_pb1.c

Problem 1
This long problem is divided into four parts.

(a) Examine the code displayed in Listing 1 carefully, and answer the following:

Thursday 2nd November spots.augusta.edu/caubert/os/ Page 2 of 3

http://spots.augusta.edu/caubert/os/


Homework #6 CSCI 3271 - Operating System I – Fall 2017

i. How many threads are created in the main function? What function do they execute?

ii. Does the main function wait for the threads to terminate to exit?

iii. What is the datatype of the lock variable?

iv. Try to guess what the pthread_mutex_init, pthread_mutex_lock, pthread_mutex_unlock,
and pthread_mutex_destroy functions do. Compare your answers with what’s indicated at
https://manpages.debian.org/jessie/glibc-doc/pthread_mutex_lock.3.en.html.

v. Try to guess what the pthread_self function do. Compare with http://man7.org/linux/
man-pages/man3/pthread_self.3.html.

vi. We basically covered all the lines of this program: make sure you understand the remaining lines
(that is, including libraries, prototypes, variable declarations, printing, exiting, sleeping).

(b) Run your virtual machine, created a “06” folder in your “Desktop/HW/” folder, and copy the code displayed
in Listing 1, or download it from http://spots.augusta.edu/caubert/teaching/2017/fall/
csci3271/hw/06/mutex_pb1.c. Compile the program, using gcc -l pthread mutex_pb1.c,
and execute it, using ./a.out.

(c) We will now modify this program progressively. Make a copy of the file before each step, to make sure
that you can always return to a previous, “working” state of the program. Compile and execute before
and after every step.

i. Modify the program so that a message is printed on the screen if pthread_create returns an
error code. The code shared previously, available at http://spots.augusta.edu/caubert/
teaching/2017/fall/csci3271/code/2017_10_17_thread.zip, should help you.

ii. In task1, replace
pthread_mutex_lock(&lock);

with
if(pthread_mutex_trylock(&lock)){

printf("\n Thread %08x is waiting\n", ttid );
pthread_mutex_lock(&lock);

}
Find in the documentation what pthread_mutex_trylock does, and analyze this code before
compiling and running it.

iii. Create a task2 function, whose code is exactly the same as the code for task1, except for the name.
Modify your program so that, in the main function, the first thread created execute task1 while the
second execute task2.

iv. Modify task1 and task2: instead of storing the value returned by pthread_self in the ttid
variable, store it respectively in tid[0] and tid[1]. Modify the rest of those functions accordingly.

v. Finally, create a second mutex lock, named lock2 and create a deadlock: make task1 lock the first
lock and then the second lock, and make task2 lock the second lock and then the first lock. You
may want to add a sleep(0.3); instruction between the locking of the two locks to increase your
chance of a deadlock occurring. Use Ctrl + C to exit your program.

(d) Read 5.11.2 and make sure that what you coded at the previous step is actually an implementation of a
deadlock. Consider the code we originally started with, and assume that we had just “forget” to release
the lock in task1. Would that be considered a deadlock?

m

Thursday 2nd November spots.augusta.edu/caubert/os/ Page 3 of 3

https://manpages.debian.org/jessie/glibc-doc/pthread_mutex_lock.3.en.html
http://man7.org/linux/man-pages/man3/pthread_self.3.html
http://man7.org/linux/man-pages/man3/pthread_self.3.html
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/06/mutex_pb1.c
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/06/mutex_pb1.c
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/code/2017_10_17_thread.zip
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/code/2017_10_17_thread.zip
http://spots.augusta.edu/caubert/os/

