
Homework #2 CSCI 3271 - Operating System I – Fall 2017

Please read Chapter 2 of the textbook and then answer the following, trying not to look at your notes or at the
textbook. Quiz #2, on Thursday 21st September, will consist exclusively of questions taken from the Part I of this
homework.

Part I — Short Questions

Question 1
The services and functions provided by an operating system can be divided into two main categories. Describe
them, and discuss how they differ.

Question 2
If I want to develop a new application program, should I rather learn the system calls or the API? Explain your
answer.

Question 3
What is the role of the system call interface?

Question 4
What does it mean for a process to lock shared data? How is it useful?

Question 5
Give three examples of system calls that deal with device management.

Question 6
Name the two common models of communication between processes. If I want to transfer large data between
two processes, which one is the fastest?

Question 7
Mechanisms implements what to do, or how to do it?

Question 8
Can an Operating System be written in more than one programming language?

Question 9
For an operating system to be portable, should it be written in assembly language or in a higher-level language?

Question 10
Should a critical routine like CPU scheduler be written in assembly language, to obtain higher performance?

Question 11
Name an advantage provided by a monolithic structure. Name a disadvantage.

Question 12
Name an example of modular approach.

Question 13
In a layered operating system, does a layer needs to know all the details of the implementation in the lower
layers?

Question 14
What is the purpose of a log file?

Question 15
What is System Generation?

m

Thursday 7th September spots.augusta.edu/caubert/os/ Page 1 of 5

http://spots.augusta.edu/caubert/os/

Homework #2 CSCI 3271 - Operating System I – Fall 2017

Part II — Problems

This week’s problems require a computer. They assume you know how to launch your OSC-2016 virtual machine
using VirtualBox (or VMware), and that you know how to log-in (remember that the password for the “oscreader”
user is “osc” (without the quotes)). I’ll assume that you will have successfully completed them by the time
Homework #3 is released (Thursday 21st September), so don’t wait and let me know if you had difficulties doing
them.

Problem 1
Let us start by organizing our folders and files.

1. Create a new folder on your desktop (right-click, and then “New Folder”), name it “hw”.

2. Open it (double click on it) and create a new folder in it, that you will name “02”.

3. Right-click, and select “Open in terminal”. You should see a terminal opening, with

oscreader@OSC:~/Desktop/hw$

printed. If you are in any other directory (i.e., if, for instance,

oscreader@OSC:~/Desktop/hw/02$

is printed), then go the right folder by changing directory, using the cd command:

cd ~/Desktop/hw

4. First, let’s download (get throug the web) this homework, using

wget -P 02
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/02.pdfãÑ

5. Now, let’s move what we did last time using the mv command:

mv ../../hw1 .

6. Now, let us list the files and folder in the hw folder with the ls command:

ls

You should see

oscreader@OSC:~/Desktop/hw$ ls
02 hw1

7. Finally, let’s rename the hw1 folder by using the mv command (indeed, moving is taken to be the same as
renaming):

mv hw1 01

8. If you use the ls command again, you should see

oscreader@OSC:~/Desktop/hw$ ls
01 02

Much better!

Problem 2
In this exercise, we will play with one of the implementation of hash functions, the sha256sum program.

1. Give an informal description of what a hash function does. Name one of the usage of such a function.

2. Create a folder named hash in your ~/Desktop/hw/02/ folder, and enter it, using

mkdir ~/Desktop/hw/02/hash && cd ~/Desktop/hw/02/hash

Then, create a file named test1.txt

Thursday 7th September spots.augusta.edu/caubert/os/ Page 2 of 5

http://spots.augusta.edu/caubert/os/

Homework #2 CSCI 3271 - Operating System I – Fall 2017

gedit test1.txt

enter “test1” in it, save it, and close gedit. Now, print its SHA256 message digest (its signature), using

sha256sum test1.txt

Can you make any connexion between the content of the file and the signature printed?

3. Make a copy of that file, that you’ll name test2.txt, using the cp command:

cp test1.txt test2.txt

Print test2.txt’s signature using the sha256sum command. Is the signature the same? Can you
conclude something regarding the correlation between the name of a file, and its signature?

4. Edit the content of test2.txt by changing just one character, and then print its signature. Can you
relate that signature to the signature of test1.txt? Does changing one character in your file changes
only one character in its signature?

5. Define what a collision attack is (wikipedia is your friend).

Problem 3
In this exercise, you will be asked to manipulate a simple Makefile and a simple C program. The Makefile
file is given in Listing 1, and the first.c C program is given in Listing 2.

(a) Using the command line, create a folder named first_C_program in your hw/02 folder, go in it,
and download the files hosted at http://spots.augusta.edu/caubert/teaching/2017/fall/
csci3271/hw/02/Makefile and http://spots.augusta.edu/caubert/teaching/2017/fall/
csci3271/hw/02/first.c, using

wget
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/02/Makefile
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/02/first.c

ãÑ

ãÑ

(b) Inspect the two files. They are simple Makefile and C programs. Notice the similarities, and the
differences, between the C programming language and the programming languages you are familiar
with. In the future, I will assume that you are familiar with the structure used in those two files.

Problem 4
Read the discussion “How can I copy a file on Unix using C?” at https://stackoverflow.com/q/2180079
(cached version), and answer the following:

(a) What is “sparseness” of a file, what is “btrfs cow”?

(b) What is a goto statement?

(c) What is Lothar, in his/her comment from Jul 17 ’12 at 21:22, complaining about?

(d) What is “Bobby Tables attack”, and why does “sanitizing” prevent them?

Thursday 7th September spots.augusta.edu/caubert/os/ Page 3 of 5

https://en.wikipedia.org/wiki/Collision_attack
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/02/Makefile
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/02/Makefile
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/02/first.c
http://spots.augusta.edu/caubert/teaching/2017/fall/csci3271/hw/02/first.c
https://stackoverflow.com/q/2180079
https://web.archive.org/web/20161124214739/https://stackoverflow.com/questions/2180079/how-can-i-copy-a-file-on-unix-using-c
http://spots.augusta.edu/caubert/os/

Homework #2 CSCI 3271 - Operating System I – Fall 2017

I'm a comment.

CC is a constant to store the name of the compiler we want to use.
CC=gcc

This is the "all" rule, the command "make" will execute that rule if no
argument is given.ãÑ

all: first.c
$(CC) first.c -o bin_first

If we type "make clean", then this command will be executed.
clean:
rm -rf bin_first

To execute your program, we could add a rule like
run: all
./bin_first
And it would indeed work: we could just type "make run" to execute our

program.ãÑ

However, this is considered a bad practice: read and comment on
https://stackoverflow.com/a/904011ãÑ

Listing 1: Makefile

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main()
{

int counter,
number_of_throws = 5,
threshold = 40;

/* This integer will act as a Boolean, 0 for false, 1 for true. */
int greater_than_threshold = 0;

/* A simple array. */
int values[number_of_throws];

/* Initializes random number generator. */
srand(time(NULL));

/* Store and print number_of_throws random numbers from 0 to 49. */
for (counter = 0; counter < number_of_throws; counter++) {

values[counter] = rand() % 50;
printf("Throw #%d: %02d\n", counter + 1, values[counter]);

Thursday 7th September spots.augusta.edu/caubert/os/ Page 4 of 5

http://spots.augusta.edu/caubert/os/

Homework #2 CSCI 3271 - Operating System I – Fall 2017

if (values[counter] > threshold) {
greater_than_threshold = 1;

}
}

/* Simple pointer manipulation. */
int* p = values;
int sum = 0;
for (counter = 0; counter < number_of_throws; counter++) {

sum += *p;
p++;

}
printf("The sum of your throws is %d.\n", sum);

/* If ... else statement. */
if (greater_than_threshold) {

printf("You had one throw greater than %d\n", threshold);
}
else {

int new_chance;
/* While loop. */
while (!greater_than_threshold) {

new_chance = rand() % 50;
if (new_chance > threshold) {

greater_than_threshold = 1;
printf("You finally had a throw greater than %d,

with %02d!\n", threshold, new_chance);ãÑ

}
else {

printf("%02d, no luck, let's try again.\n",
new_chance);ãÑ

}
}

}
return (0);

}

Listing 2: first.c

m

Thursday 7th September spots.augusta.edu/caubert/os/ Page 5 of 5

http://spots.augusta.edu/caubert/os/

