Loop Quasi-Invariant Peeling
A method to optimize programs

Assya Sellak
Advisor: Dr. Clement Aubert

AUGUSTA UNIVERSITY

Programs

* Programs = set of instructions to perform a
task

 Types of instructions:
 Data modification
e Control flow

Control-flow Instructions

If...else... LOOPS: while, do...while, for
!
IF FALSE @ IF FALSE
IF TRUE IF TRUE
BODY BODY
14
REST OF REST OF

Programming Language Machine Language

for i in batch {
oven.preheat()
bowl.add(dry_ingredients)
bowl.mix()

»| COMPILER
cookies.bake()

}

Example: Optimize Baking Time

For each batch:
Preheat oven

Mix dry stuff ...

Example: Optimize Baking Time

Preheat oven
peel unnecessary
For each batch: instruction For each batch:

Preheat oven >
Mix dry stuff ... Mix dry stuff...

Loop Invariant Code Motion (LICM)

* Peeling: move commands that do not change within the
loop to occur before the loop

i=0;

while (i < n) {
w = 20;
X =Y +Z;

1++;

Loop Invariant Code Motion (LICM)

* Peeling: move commands that do not change within the
loop to occur before the loop

i=0;
: w = 20;
while (i <) { while (i
while (i < n D
W = 20: R while (i < n) {
X=y+Z
1++; i+

Proof of Equivalence

e Guarantee the optimized program performs the
same tasks as the original

INPUT OUTPUT

Performs specified task(s) Performs specified task(s)
Runs at a slower speed Runs at a faster speed

Algorithm Definition

Definition 6. Let C:= while E do [C1;Cy; ..., Cyn] be a command. We define the
directed graph Dep(C) as follows:

— the set of vertices VPP(©) is equal to {Cy,...,Co} (the set of commands in
the loop);

— the set of edges EP°P©) is equal to w" _, Wicin(c,) PrDi(Cn) (the set of all
principal dependencies);

— the source s(i) of the edge Cy € PrD;(Cy) s Cy;

— the target t(i) of the edge Cx € PrD;(Cp) is Cy.

The invariance degree deg.(Cy,) of a command C, w.r.t. C is then defined as
follows. When clear, we will avoid writing the subscript C to ease notations. If
Cy is a source in Dep(C), then deg(C,) = 1. If C, has a reflective edge in Dep(C),
then deg(Cp) = o0o. Otherwise, we write Fib(Cp) — the fiber over C, — the set of
vertices in Dep(C) defined as {Cy | 3e € EPP() s(e) = Cy,t(e) = Cu}, and define
deg(Cn) by the following equation, where x>m (i) = 1 if ¢ > m and x>m (i) =0
otherwise:

deg(Ca) = max ({deg(Cs) + x>m(é) | Cs € Fib(Ca)})

In particular, if C, is part of a cycle in Dep(C), its degree is equal to oco.

For all i € N U {oo}, we define the inverse image deg (i), i.e. deg™ (i) =
{Cy | deg(C)x =i}, and we note maxdeg(C) the largest integer (i.e. not equal to
o) such that deg™'(maxdeg(C)) # (. The following lemma will be used in the
proof of the main theorem.

10

Algorithm Snippet

def comput_deg(tabDeg,i,lldep):
if tabDegli]==0: // if deg(Ci) has not been computed

if(len(11dep[i])==0): // 4if Ci has no dependencties, set deg(Ci) in tabDeg to 1
tabDeg[i]=1

else: //else compute max degree of Ci's dependencies(Cl)
tabDeg[i]=-1
deg=-1

for 1 in 1ldepl[i]:
// compute degree for each dependency and update tabDeg
tabDeg[1] = comput_deg(tabDeg,1,11ldep)
// if Ci is also a dependency of Cl, then there is a loop
if tabDeg[l]==-1: return -1
// i1f deg(Cl) is the maz and Cl precedes Ct
if (tabDegl[l]>deg) and 1<i: deg=tabDegl[1]
// if deg(Cl) is the maz if Cl follows C%
if (tabDeg[l]>=deg) and 1>i: deg=tabDeg[l]+1
// do mothing <if the current degree is the maz

tabDeglil=deg // set deg(Ci) in tabDeg to maxz degree
return tabDegl[i]

11

Application

 Simplification
* Automatically generated
* No conflict

Results

e Improve original implementation
e Added tests
e Overall goal = tranform

Limitations

* Proof of concept:
* Programming language = C
* Only certain types of instructions
* Rest are ighored

Future work

» Add optimization to compiler

 Parallelization: split loops to run

simultaneously

i=0,j=10, k =0;
while (i < n) {

. . J=3-1;
i=0,j=10, k =0; i=i+1;
while (i < n) { >]
J=1-1; while (i < n) {
k=k+1; k=k+1;
1=1+1; i=i+1;

} }

Conclusion

* Method for removing unnecessary instruction
from loops

Thank you!

