Distributing and Parallelizing Non-canonical Loops

Clément Aubert!, Thomas Rubiano?,
Neea Rusch!, Thomas Seiller?3

I Augusta University
2 LIPN - Laboratoire d'Informatique de Paris-Nord
3 CNRS - Centre National de la Recherche Scientifique

VMCAI 2023 16 January 2023

Loop Optimization

loop (0...mn) {
task_x

¥

loop (0...mn) {
task_y

¥

Fission or
distribution

C. Aubert, T. Rubiano, N. Rusch, T. Seiller

loop (0...m) {
task_x
task_y
<~ }
Fusion or

combination

...and many more strategies.

Distributing and Parallelizing Non-canonical Loops

loop (0...n/2) {

task_x
task_y

}

loop (n/2...n) {
task_x
task_y

}
Splitting

VMCAI 2023

In This Work

We present a loop optimization algorithm based on loop fission transformation,
to introduce parallelization potential in previously uncovered cases.

Potential for parallelism Loop fission (or distribution)

® |dentify independent operations

® Perform those operations in any
order as system resources become
available

Break loop into multiple loops

Each loop has the same iteration range
Each takes part of original loop’s body
Some duplication may be needed

Conceptually: Distribute loops =- parallelize = speedup in execution time

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Our Technique

Is applicable even when iteration space is unknown.

Can be applied to any kind of loop: for, while, ...

Can be applied to languages from high-level to intermediate representation.

Is suitable for integration with automatic compilation and optimization tools.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Technique Overview

Start with a sequential imperative program.
1. Perform dependency analysis using data flow graphs (DFGs).
2. Build a dependency graph.
3. Compute condensation graph and compute its covering.
4. Create loop for each statement in covering.

5. Parallelize distributed loops.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Program Under Analysis

We consider simple deterministic imperative while language, with variables,
expressions, commands, and parallel command. Program can include:

® Arrays and pure function calls,

Arbitrarily complex update/termination conditions,

Loop carried-dependencies, and

Arbitrarily deep loop nests.

Certain memory accesses are out of scope: pointers, aliasing, etc.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Variables in Command C

We identify variables modified by (Out), used by (In), and occurring (Occ) in C.

E.g., C:=1t[e1] = eq,

Out(C) =t
In(C) = Occ(er) U Occ(eq)

Occ(C) =t U Occ(er) U Oce(er)

We represent and analyze these dependencies using Data Flow Graphs (DFGs).

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Data Flow Graph (DF

® A DFG is a matrix over a fixed semi-ring.
® Represents a weighted relation on set of variables involved in command C.

® 3 types of dependencies:

dependence
oo dependence P

propagation

1 propagation y - Propagation >y

0 reinitialization z z

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Constructing DFGs

For each command, we define a mapping from variables of command C to DFG.
We write M(C) for the DFG of C.

Definition: Assignment

Given an assignment C, its DFG is given by:

oo if x € Out(C) and y € In(C) (Dependence)
M(C)(y,x) =4¢ 1 ifx =y and x ¢ Out(C) (Propagation)
0 otherwise (Reinitialization)

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Representing DFGs

Cui=t[il =u+]j

M(C) M(C) as a graph
t i u j
Oui(e) = ft) t[0 0 0 0
o iloo 1 0 0
In(C) ={i,u,j} aloo 0 1 0
Occ(C) = {t,1i,u,j} jloo 0 0 1

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Correction

All body variables of conditional and loop statements depend on its control
expression. We apply loop correction to account for this dependency.

For e an expression and C a command, Corr(e)c, is E* x O.

® E' - column vector with oo for variables in Occ(e) and 0 for other variables.

® O — row vector with oo for variables in Out(C) and 0 for other variables.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Algorithm

1. Pick a loop at top level.

2. Construct a dependence graph, which uses the DFG.

3. Compute its condensation graph from dependence graph.
4. Compute a covering of the condensation graph.

5. Create a loop per element of the covering.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Dependence Graph

t i j sl s2 L
t[l1 oo 0 oo In(Cy) = {i,j}
whiﬁ(§[i] > i; { il0 o0 0 oo oo Out(C3) = {i}
. s1lil=j*j; C1 s
S|
, e s200 00 0 0 s1[i1=j+]

Definition: Dependence graph

The dependence graph of the loop W := while e do {Cy; - ;Cy} is the graph
whose vertices is the set of commands {Cy;--- ;C,}, and there exists a directed
edge from C; to C; if and only if there exists variables x € Out(C;) and y € In(C;)
such that M(W)(y,x) = oo.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Condensation Graph & Covering

Given a dependence graph, its condensation graph Gy is the graph whose
® vertices are strongly connected components (SCCs) and

® edges are the edges whose source and target belong to distinct SCCs.

We then find the proper saturated covering of Gy. For graph G,
® covering is a collection of subgraphs such that G = nglGi-

® saturated covering is a covering such that for all edges with source in Gj, its
target belongs to G; as well.
® |t is proper if none of the subgraph is a subgraph of another.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Constructing Output

Lastly, we construct loop W by inserting a loop for each element in the proper
saturated covering.

If W contains multiple loops, parallelize #.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Example

Step 1 of 6

Identify In and Out variables

while (j < m) {
x = r[i]l = A[i1[j1; //

y = A[i1[31 = pljl; //
s[j1 = s[j]l + x; //
qli]l = qli] + y; //
j++s //

C1
Cc2
Cc3
Cc4
C5

Out(Cq) = {x}
In(Ci) = {4,4i,3,r}

Out(C3) = {s}
In(C3) = {s, j,x}

Out(Cs) = {j}
In(Cs) = {3}

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Example

Step 2 of 6

Construct DFGs for each command

i jmx y A r s pgq
irt - S
jil- 1 - oo
while (j < m) { m|- 1
x = r[i] = A[il[j]; // C1 x| .
y = A[i1[3]1 = p[j1; // C2 =E 1.
s[il = s[j]l + x; // ¢3 M(Ci) = . - 1
qlil = qlil + y; // C4 . 00 1 .
jtts // C5 <l 1.
¥ pl- 1 -
al 1]

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Example

Step 3 of 6

Compose DFGs of commands M((Cy;...;Cy) and apply loop correction Et x O

i jmzx yAr s pgq

if1 - 00 00 . o0

j 00 o0 00 00 00

m{- oo 1 oo oo 00 - 00

X 00
M(C):Z oo oo 1 ”

r 00 1

s . 00

P 00 1

q 0

M(C) = M(C5) X --- X M(Cq) + Corr(e)c

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Example

Step 4 of 6

Construct a dependence graph. Vertices are the set of commands {Cy;--- ;Cyp}.
Add directed edge from C; to C; iff 3 z,y, where x € Out(C;) and y € In(C;)
and M(W)(y,x) = co.

x=r [1]*A[i] []] i y=A[il [31*p[j]

qlil=qlil+y

s[jl=s[jl+x

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Example

Step 5 of 6

Construct a condensation graph and proper saturated covering.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Example

Step 6 of 6

Distribute loops and parallelize.

while (j < m) { while (j < m) {
. x = r[i] = A[i]1[j1; y = A[i1[j]1 * p[jd;
W:= parallel s[jl = s[j]l + x; qlil = qlil + y;
j++s j++;
¥ ¥

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

Experimental Evaluation

e Our artifact! is a collection of benchmarks.
® Mapped imperative syntax to C language.
® Used OpenMP directives to parallelize.

® Measured on standard benchmark suites, partially converted to while loops.

® Compared to an alternative loop transformation tool.

LClément Aubert et al. Distributing and Parallelizing Non-canonical Loops — Artifact. Version 1.0. Sept.
2022. DOI: 10.5281/zenodo.7080145. URL: https://github.com/statycc/loop-fission.

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

https://doi.org/10.5281/zenodo.7080145
https://github.com/statycc/loop-fission

Experimental Results

3

speedup

4

speedup

=00 ® 01

=00 ® 01

s

02 =03

M
bicg

M
3mm

L

02 =03

3

speedup

4

speedup
N

=00 =01

XS

=00 =01

S M L
gesummy

S ML
fdtd-2d

02 =03

® Enables transformation and parallelization of
loops ignored by alternative methods.

® Non-canonical loops: speedup upper-bounded
by the number of parallelizable loops
produced by transformation.

XL

02 =03

® Canonical loops: comparable to alternative
methods in speedup potential.

® Demonstrated automatic insertion of parallel
directives and practicality of this technique.

XL

C. Aubert, T. Rubiano, N. Rusch, T. Seiller

Distributing and Parallelizin; i VMCAI 2023

Conclusion

Introduced an automatable loop optimization technique that adds
parallelization potential to imperative programs.

It is loop and language-agnostic — many possible applications.

® We presented the algorithm to perform the loop optimization.

Experimental results demonstrate expected performance gain — see artifact

® See our paper for proof of preservation of semantic correctness.

() statycc/loop-fission

C. Aubert, T. Rubiano, N. Rusch, T. Seiller Distributing and Parallelizing Non-canonical Loops VMCAI 2023

https://github.com/statycc/loop-fission

