
mwp-Analysis Improvement and Implementation
Realizing Implicit Computational Complexity

C. Aubert1 T. Rubiano2 N. Rusch1 T. Seiller3

1 Augusta University
2 Paris 13 University, LIPN – UMR 7030

3 CNRS, LIPN – UMR 7030

FSCD, Haïfa, Israël, August 4th 2022

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 1 / 1

Summary

Our research focuses on static program analysis of imperative programs

Using a technique inspired by implicit computational complexity

This talk will demonstrate how to use this technique to analyze variable
value growth

We have modified, extended and made this technique practical with a
working protype

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 2 / 1

Implicit Computational Complexity (ICC) theory

Definition by Romain Péchoux‡:

Let L be a programming language, C a complexity class, and [[p]] the function
computed by program p.

Find a restriction R⊆L, such that the following equality holds:

{[[p]] | p ∈R}=C

The variables L, C and R are the parameters that vary greatly between
different ICC systems.

‡Péchoux, Romain. 2020. “Complexité implicite: bilan et perspectives.” Habilitation à Diriger des
Recherches (HDR). Université de Lorraine.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 3 / 1

“A Flow Calculus of MWP-Bounds for Complexity
Analysis"

Neil D. Jones and Lars Kristiansen (2009)

“Program complexity analysis seems naturally to decompose into two parts a
termination analysis and a data size analysis. [. . .] This paper considers data
size analysis. [. . .] The analysis aims, given a program, to find out whether its
variables have acceptable growth rates."

Theoretical foundation: mwp analysis

2008 paper by Neil Jones and Lars Kristiansen:
"A Flow Calculus of mwp-Bounds for Complexity Analysis"

This technique is related in spirit to abstract interpretation but differs in
that it bounds transitions between states (commands), instead of states

Also related to size-change principle, quasi-interpretations.

"Careful and detailed analysis of the relationship between resource
requirements of computation and the way data might flow during
computation"

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 5 / 1

mwp-Analysis: Program Syntax

Variable X1 | X2 | X3 | . . .

Expression X | e + e | e * e

Boolean Exp. e = e, e < e, etc.

Commands skip | X := e | C;C | loop X {C} |
if b then C else C | while b do {C}

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 6 / 1

mwp Calculus

Analyze variable value growth by:
1 Assigning a vector to each variable
2 Collecting vectors into a matrix
3 Applying derivation rules to evaluate program complexity

Flows represent quantitative information of variables on each other:

0 no dependency
m maximal
w weak polynomial
p polynomial

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 7 / 1

Definition
An mwp-bound is a number-theoretic expression of form
max(~(x),poly1(~y))+poly2(~z).

An mwp-bound W over the variables x1, . . . ,xn is represented as a column vector
W(x1)
W(x2)

...
W(xn)


E.g., if n= 5, an mwp-bound of the form max(x5,poly1(x2,x4))+poly2(x1) is
represented by the vector 

p
w
0
w
m

 .

An n×n matrix consists of n column vectors (V1, . . . ,Vn), and thus an n×n
matrix over {0,m,w,p} will represent a collection of n mwp-bounds.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 8 / 1

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 9 / 1

mwp-Analysis: Derivation Example

Let’s analyze this program: loop X3 {X2 = X1 + X2}

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 10 / 1

Example

loop X3 {X2 = X1 + X2}

X1 :

m
0
0

 X2 :

 0
m
0

 (E1)

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 11 / 1

Example

loop X3 {X2 = X1 + X2}

X1 + X2 :

 p
m
0

 (E3)

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 12 / 1

Example

loop X3 {X2 = X1 + X2}

X2 = X1 + X2 :

m p 0
0 m 0
0 0 m

 (A)

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 13 / 1

Example

loop X3 {X2 = X1 + X2}

loop X3 {X2 = X1 + X2} :

m p 0
0 m 0
0 p m

 (L)

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 14 / 1

Nondeterminism

The body X2 = X1 + X2 of the loop command admits in fact three different
derivations, obtained by applying A to one of the following derivations π0,π1,π2:

E1
`JK X1 :

(m
0
0

) E1
`JK X2 :

(0
m
0

)
E3

`JK X1 + X2 :
(p

m
0

)
E1

`JK X1 :
(m

0
0

) E1
`JK X2 :

(0
m
0

)
E4

`JK X1 + X2 :
(m

p
0

) E2
`JK X1 + X2 :

(w
w
0

)

This is because different mwp-bounds may be numerically equal to the same
polynomial. e.g.,max(0,x1 +x2), max(x1,0)+x2, and max(x2,0)+x1 (represented
by the above bounds) are all numerically equal to x1 +x2.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 15 / 1

Nondeterminism

From π0, the derivation of loop X3 {X2 = X1 + X2} can be completed using A
and L, but since L requires having only m coefficients on the diagonal, π1 cannot
be used to complete the derivation, because of the p coefficient in a box below:

.... π0

`JK X1 + X2 :
(p

m
0

)
A

`JK X2 = X1 + X2 :
(m p 0

0 m 0
0 0 m

)
L

`JK loop X3 {X2 = X1 + X2} :
(

m p 0
0 m 0
0 p m

)

.... π1

`JK X1 + X2 :
(m

p
0

)
A

`JK X2 = X1 + X2 :
(

m m 0
0 p 0
0 0 m

)

Similarly, the L rule cannot be applied to extend π2 because of a diagonal w
coefficient.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 16 / 1

Open questions

The original mwp-analysis was theoretical

There were open questions:

1 Can it be applied to richer languages?

2 How powerful and convenient is this technique? [Can it be implemented?]

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 17 / 1

Implementing mwp analysis

Two modifications were needed to enable implementation:

1. Changing handing of failure: introduced a new flow ∞ to represent failure
locally

0,m,w,p,∞

Enables completing every derivation

Provides fine-grained information on source of failure on programs that do
not have polynomially bounded growth

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 18 / 1

Implementing mwp analysis

Two significant modifications were needed to enable implementation:

2. Non-determinism of original analysis was impractical:
replaced by deterministic derivation rules

X2 = X1 + X1 :
(
m wδ(0,0)+pδ(1,0)+wδ(2,0)
0 0

)

All derivations are represented in the same matrix

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 19 / 1

Nondeterminism: impractibility

A program of n lines can have 3n different derivations —as exemplified by
explosion.c, a simple series of applications — and it is possible that only one of
them can be completed.

Computing all the matrices one after the other leads to time explosion.

Storing those three vectors and constructing all the matrices in parallel
leads to a memory explosion: the analysis for two commands involving 6
variables with 3 choices would result in 9 matrices of size 6×6, i.e., 324
"scalars".

Using the isomorphism A→M(Ω)∼=M(A→Ω) allows for a compact
representation avoiding redundancies (if a coefficient depends on only one
choice, represented as 3 elements of Ω; if independent, represented as a
single element): the above program involving 6 variables with 3 choices
would now be assigned a unique 6 × 6 matrix that requires 66 "scalars"
instead.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 20 / 1

Further optimisations: polynomials

We represent functions A→ {0,m,w,p,∞} (think A= {0,1,2}n) as "polynomials":

we define basic functions δ(i, j) by δ(i, j)(an,an−1, . . . ,a1)=m if aj = i, and
δ(i, j)(an,an−1, . . . ,a1)= 0 otherwise.

any function A→ {0,m,w,p,∞} is represented as a linear combination of
"monomials" (products of basic functions):

∑
kαk

(∏
δ(i`, j`)

)
.

Using techniques akin to Gröbner bases, we can implement efficient
computation of algebraic operations. Multiplying by a monomial preserves the
(well-chosen) order (of non-zero elements), which can be used to implement
multiplication efficiently: P1P2 is computed by producing the collection of miP2
for mi monomials in P1, then fusion the ordered list thus obtained.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 21 / 1

Deterministic system

We thus replace the original mwp rules by the following deterministic system.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 22 / 1

The new system now assigns to loop X3 {X2 = X1 + X2} the unique matrix(m pδ(0,0)⊕mδ(1,0) ⊕wδ(2,0) 0
0 mδ(0,0)⊕∞δ(1,0)⊕∞δ(2,0) 0
0 pδ(0,0)⊕0δ(1,0)⊕0δ(2,0) m

)
where we observe that

1 only one choice, one assignment, 0, gives a matrix without ∞ coefficient,
corresponding to the fact that, in the original system, only π0 could be used
to complete the proof,

2 the choice impacts the matrix locally, the coefficients being mostly the
same, independently from the choice,

3 the influence of X2 on itself is where possible non-polynomial growth rates
lies, as the ∞ coefficient are in the second column, second row.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 23 / 1

Separating the problem

This representation allows us to separate the computation of mwp-bounds in
two distinct problems:

Decide the existence of a bound;

Compute concrete bounds.

The workflow is the following:

C program

matrix+delta_graph

existence concrete bounds

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 24 / 1

Key ingredient: Compositionality

We integrate function calls as follows. Let f be a function defined independently
(assuming it has only one output value). Analysing the code defining f produces
a matrix M which we use to produce mwp-certificates as follows: we find the
assignments (choices) for which no ∞ coefficients appear, and project the
resulting matrices to only keep the vector representing the corresponding mwp
bound of the output value w.r.t. the input values of f . We thus obtain k possible
certificates M1

f ,M2
f , . . . ,Mk

f .

We then add the following rule to assign a mwp flow to functions calls to f .

F
`Xi = F(X1,. . ., Xn) : 1 i←− ((M1

f)δ(0,c)⊕·· ·⊕ (Mk
f)δ(0,c)δ(k,c))

We also explain how this can be used to analyse recursive calls.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 25 / 1

Further optimisations: delta_graphs

We collect during the analysis of the monomials with infinite coefficients. Note
that these coefficients can be thought of as basic open (cylindrical) sets:
e.g.,δ(0,1)δ(2,2). We use a specific data structure called delta_graphs that
manages this collection of polynomials and simplifies it.

•

• • •

• • • • • • • • •

••••••••• ••••••••• •••••••••

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 26 / 1

Further optimisations: delta_graphs

We collect during the analysis of the monomials with infinite coefficients. Note
that these coefficients can be thought of as basic open (cylindrical) sets:
e.g.,δ(0,1)δ(2,2). We use a specific data structure called delta_graphs that
manages this collection of polynomials and simplifies it.

•

• • •

• • • • • • • • •

••••••••• ••••••••• •••••••••

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 26 / 1

Further optimisations: delta_graphs

We collect during the analysis of the monomials with infinite coefficients. Note
that these coefficients can be thought of as basic open (cylindrical) sets: e.g.,. We
use a specific data structure called delta_graphs that manages this collection of
polynomials and simplifies it.

Example
If one has infinite coeficients for the monomials δ(0,1)δ(2,2), δ(2,2)δ(0,3),
δ(2,2)δ(1,3), and δ(2,2)δ(2,3), then it is equivalent to having infinite coefficients
for δ(0,1)δ(2,2) and δ(2,2), which in turn is equivalent to having an infinite
coefficient for the monomial δ(2,2).

The existence of an mwp-bound then becomes equivalent to the question: is the
delta_graph different from the graph containing only the monomial 1?

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 26 / 1

Further optimisations: delta_iterator

When computing the concrete bounds, we use a specific iterator using the
delta_graph that produces only values not covered by the monomials for which
an infinite coefficient appears.

e.g.,if the delta_graph contains the single monomial δ(2,2), the delta_iterator
for size 3 lists will produce (0,0,0) initially, then the following values:
(0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,1,2), (1,0,0),

•

• • •

• • • • • • • • •

••••••••• ••••••••• •••••••••

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 27 / 1

Further optimisations: delta_iterator

When computing the concrete bounds, we use a specific iterator using the
delta_graph that produces only values not covered by the monomials for which
an infinite coefficient appears.

e.g.,if the delta_graph contains the single monomial δ(2,2), the delta_iterator
for size 3 lists will produce (0,0,0) initially, then the following values:
(0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,1,2), (1,0,0),

•

• • •

• • • • • • • • •

••••••••• ••••••••• •••••••••

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 27 / 1

Resolving practical inefficiencies

Computing all mwp certificates is still costly. This issue is however resolved by
the following strategies:

1 decoupling computation by using delta graph

2 compositionality enables reusing results

C program

matrix+delta_graph

existence concrete bounds

once!

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 28 / 1

Resolving practical inefficiencies

Compositionality of analysis enables computing result once then reusing the
result it in the future

Analysis can be performed on parts of source code

It is possible to analyze a function, then save the result

Previously analyzed result can be reused at next execution

Expensive computation needs to be carried out once

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 29 / 1

Prototype: pymwp

Implementation of mwp-analysis on a subset of C99, in Python

Open source: github.com/statycc/pymwp

If analysis succeeds:

Ï program uses at most a polynomial amount of space

Ï if it terminates, it will do so in polynomial time

If variable grows too much, polynomial bound cannot be guaranteed

Still work to be done.

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 30 / 1

Not the beginning...

This work follows a previous implementation of similar techniques by Moyen,
Rubiano, and Seiller.

1 Loop optimization: using dependency analysis borrowed from ICC to detect
inefficiencies in loops and to automatically unroll them to optimize the
code. This was implemented on C
(https://github.com/statycc/LQICM_On_C_Toy_Parser), as well as on
(an old version of) LLVM Intermediate Representation
(https://github.com/ThomasRuby/LQICM_pass).

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 31 / 1

https://github.com/statycc/LQICM_On_C_Toy_Parser
https://github.com/ThomasRuby/LQICM_pass

Not the beginning...

This work follows a previous implementation of similar techniques by Moyen,
Rubiano, and Seiller.

1 Loop optimization: using dependency analysis borrowed from ICC to detect
inefficiencies in loops and to automatically unroll them to optimize the
code. This was implemented on C
(https://github.com/statycc/LQICM_On_C_Toy_Parser), as well as on
(an old version of) LLVM Intermediate Representation
(https://github.com/ThomasRuby/LQICM_pass).

Coming back to the original questions.
1 Can it be applied to richer languages?

2 Can it be implemented? Yes!

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 31 / 1

https://github.com/statycc/LQICM_On_C_Toy_Parser
https://github.com/ThomasRuby/LQICM_pass

Not the beginning...

This work follows a previous implementation of similar techniques by Moyen,
Rubiano, and Seiller.

1 Loop optimization: using dependency analysis borrowed from ICC to detect
inefficiencies in loops and to automatically unroll them to optimize the
code. This was implemented on C
(https://github.com/statycc/LQICM_On_C_Toy_Parser), as well as on
(an old version of) LLVM Intermediate Representation
(https://github.com/ThomasRuby/LQICM_pass).

Coming back to the original questions.
1 Can it be applied to richer languages? Sure, but more interestingly: ICC

techniques should be used on Intermediate Representation.

2 Can it be implemented? Yes!

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 31 / 1

https://github.com/statycc/LQICM_On_C_Toy_Parser
https://github.com/ThomasRuby/LQICM_pass

... nor the end.

Future directions for complexity analysis include compiler integration:

1 Leverage intermediate representation
2 Static single assignment (SSA) form for efficiency and fine-grained

information
3 Certified complexity analysis to be able to integrate with CompCert

More generally, flow-analyses open a rich new territory to be explored:
1 Automatic loop optimisation (previous work)
2 Complexity analysis (this work, and extensions)
3 Automatic loop parallelisation (available draft)
4 Floating-point analysis to track growth of error in precision (project)
5 . . .

T. Seiller, CNRS mwp-Analysis Improvement and Implementation August 4th, 2022 32 / 1

