ﬁ’%‘ Semantic-preserving optimization algorithm for automatic program parallelization

)) 1 : L
Dr. Clément Aubert 1, Dr. Thomas Rubiano 21 School of Computer and Cyber Sciences, Augusta University

AU G U STA 2 LIPN — UMR 7030 Université Sorbonne Paris Nord, France

UNIVERSITY Neea Rusch! and Dr. Thomas Seiller 43 3 CNRS, France

Introduction to parallel loops Implementation and examples Preliminary benchmarks

* Loop statements are used for implementing repeated Development is currently underway for an open-source tool implementing Program wall time, as measured on example two arrays, and
computation, but when used extensively or carelessly, they this technique on a subset of C programming language. GCC optimization level —O0, showing average speedup of factor
produce performance inefficiencies. 3.4, on executing machine: Darwin kernel v. 20.6.0, 1386 processor,

Before optimization After optimization with 4 cores and 16 GB RAM.

* Modern CPUs provide critical performance improvement

void main() { void main() {

through parallelism, but software must be written specifically 4.0 - M Original M Our technique -+ Speedup

int n = 100; int n = 100;

to utilize this available multicore hardware. int a[n], b[n]; int a[n], b[n]; 3 c

. . . for(int i = 0; i < n; ++i){ # pragma omp parallel for
This research presents a novel algorithm for automatic program a[i] = i; for(int i = 0; 4 < n; ++i) “ 3.0 [e
parallelization based on loop splitting. Using flow-dependency b[i] = i * 2; a[i] = i; & 925 |00 ... & & N BN
analysis inspired by Implicit Computational Complexity theory, the) 4 pragma omp parallel for S R T B B
algorithm detects opportunities for splitting loops horizontally into for(int i = 0; i < n; ++i) g 7
smaller, parallelizable loops, then automatically applies this b[i] = 1 * 2; = 1.5 e e W R W R R
optimization. The transformation is semantic-preserving, which = ol B N B B 8 B B
ensures the program behavior remains unchanged. |

Pseudo code SEE Y BN e B By BN B BN e
We hypothesize combining this algorithm with OpenMP [1], 0.0 H=H |

1 2 3 4 5 6 7 3 9 10

an existing state-of-the-art shared memory multiprocessing OPTIMIZE(c program : str) -> [sStr] : — ;
nput size, thousands

programming model, will provide noticeable per formance

gains for resource-intensive computational tasks. Parse C program into Abstract Syntax Tree (AST) .
Conclusion

Recursively for each loop in AST: State of the art tools for loop optimization techniques have

1 Tine primery depandencics of leosn body wariabies limitations, e.g., while loops are not optimized [2;3], and
algorithm redesign and manual effort is required to create potential

Our technique pictorially

Step 1. Identify ﬂow-independencies . Build a directed graph of dependencies

for parallelism [4].

. Compute strongly connected components (SCC)

. Separate SCCs into subgraphs

. Split the loops based on subgraphs Our technique has potential to address these deficiencies: it is loop-

type agnostic, identifies parallelization opportunities automatically,

O O B W DN

. Insert each split loop into AST

. . . and has already demonstrated preliminary performance gains.
Step 2. Split computation horizontally

Reconstruct C program from AST using C generator

Open questions and future work

* Development of cost-benefit analysis to ensure gain

Return optimized program

* Implementation need to be extended to support for richer C

language syntax, but algorithm and prototype already exist

° . ° o
Step 3. Parallelize Source code: https://github.com/statycc/pyalp Completing further benchmarking and measurements
Gain time
-- >
« [1] Michael Klemm and Bronis R. de Supinski, editors. [2] Timothy G. Mattson, Beverly A. Sanders, and Berna [3] Rohit Chandra, Ramesh Menon, Leo Dagum, David [4] Jukka Suomela. Programming Parallel Computers.
OpenMP Application Programming Interface L. Massingill. Patterns for parallel program ming. Kohr, Dror Maydan, and Jeff McDonald. Parallel Aalto University, 2015. URL: https://ppc.cs.aalto.fi

Specification Version 5.2, November 2021. Addison-Wesley Educational, Boston, MA. 2004. Programming in OpenMP. Morgan Kaufmann, 2000.

