
Poster Title
Author Names
Augusta University Pharmacy, Augusta, Georgia

METHODS

CONCLUSIONSINTRODUCTION

CLINICAL IMPLICATIONS

RESULTS

ACKNOWLEDGEMENTS

REFERENCES

Poster Title
Author Names
Augusta University Pharmacy, Augusta, Georgia

METHODS

CONCLUSIONSINTRODUCTION

CLINICAL IMPLICATIONS

RESULTS

ACKNOWLEDGEMENTS

REFERENCES

Introduction to parallel loops Implementation and examples

• Loop statements are used for implementing repeated
computation, but when used extensively or carelessly, they
produce performance inefficiencies.

• Modern CPUs provide critical performance improvement
through parallelism, but software must be written specifically
to utilize this available multicore hardware.

This research presents a novel algorithm for automatic program
parallelization based on loop splitting. Using flow-dependency
analysis inspired by Implicit Computational Complexity theory, the
algorithm detects opportunities for splitting loops horizontally into
smaller, parallelizable loops, then automatically applies this
optimization. The transformation is semantic-preserving, which
ensures the program behavior remains unchanged.

void main() {
int n = 100;
int a[n], b[n];

for(int i = 0; i < n; ++i){
a[i] = i;
b[i] = i * 2;

}
}

Before optimization

void main() {
int n = 100;
int a[n], b[n];

pragma omp parallel for
for(int i = 0; i < n; ++i)
a[i] = i;

pragma omp parallel for
for(int i = 0; i < n; ++i)
b[i] = i * 2;

}

After optimization

Preliminary benchmarks

Program wall time, as measured on example two_arrays, and
GCC optimization level –O0, showing average speedup of factor
3.4, on executing machine: Darwin kernel v. 20.6.0, i386 processor,
with 4 cores and 16 GB RAM.

OPTIMIZE(c_program : str) -> [str]

Parse C program into Abstract Syntax Tree (AST)

Recursively for each loop in AST:

1. Find primary dependencies of loop body variables

2. Build a directed graph of dependencies

3. Compute strongly connected components (SCC)

4. Separate SCCs into subgraphs

5. Split the loops based on subgraphs

6. Insert each split loop into AST

Reconstruct C program from AST using C generator

Return optimized program

Semantic-preserving optimization algorithm for automatic program parallelization

Dr. Clément Aubert 1, Dr. Thomas Rubiano 2,

Neea Rusch 1, and Dr. Thomas Seiller 2,3

Source code: https://github.com/statycc/pyalp

We hypothesize combining this algorithm with OpenMP [1],

an existing state-of-the-art shared memory multiprocessing

programming model, will provide noticeable performance

gains for resource-intensive computational tasks.

Our technique pictorially

Conclusion
State of the art tools for loop optimization techniques have
limitations, e.g., while loops are not optimized [2;3], and
algorithm redesign and manual effort is required to create potential
for parallelism [4].

Our technique has potential to address these deficiencies: it is loop-
type agnostic, identifies parallelization opportunities automatically,
and has already demonstrated preliminary performance gains.

Open questions and future work

• Development of cost-benefit analysis to ensure gain
• Implementation need to be extended to support for richer C

language syntax, but algorithm and prototype already exist
• Completing further benchmarking and measurements

Step 2. Split computation horizontally

Step 3. Parallelize

Gain time

Step 1. Identify flow-independencies

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8 9 10

W
al

l t
im

e,
 se

co
nd

s

Input size, thousands

 Original Our technique Speedup

Pseudo code

[1] Michael Klemm and Bronis R. de Supinski, editors.
OpenMP Application Programming Interface
Specification Version 5.2, November 2021.

[2] Timothy G. Mattson, Beverly A. Sanders, and Berna
L. Massingill. Patterns for parallel program ming.
Addison-Wesley Educational, Boston, MA. 2004.

[3] Rohit Chandra, Ramesh Menon, Leo Dagum, David
Kohr, Dror Maydan, and Jeff McDonald. Parallel
Programming in OpenMP. Morgan Kaufmann, 2000.

[4] Jukka Suomela. Programming Parallel Computers.
Aalto University, 2015. URL: https://ppc.cs.aalto.fi

Development is currently underway for an open-source tool implementing
this technique on a subset of C programming language.

1 School of Computer and Cyber Sciences, Augusta University
2 LIPN – UMR 7030 Université Sorbonne Paris Nord, France
3 CNRS, France

