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Introduction to parallel loops Implementation and examples

• Loop statements  are used for implementing repeated 
computation, but when used extensively or carelessly, they 
produce performance inefficiencies.

• Modern CPUs provide critical performance improvement 
through parallelism, but software must be written specifically 
to utilize this available multicore hardware.

This research presents a novel algorithm for automatic program 
parallelization based on loop splitting. Using flow-dependency 
analysis inspired by Implicit Computational Complexity theory, the 
algorithm detects opportunities for splitting loops horizontally into 
smaller, parallelizable loops, then automatically applies this 
optimization. The transformation is semantic-preserving, which 
ensures the program behavior remains unchanged.

void main() {  
int n = 100;
int a[n], b[n];

for(int i = 0; i < n; ++i){
a[i] = i;
b[i] = i * 2; 

}  
}

Before optimization

void main() {  
int n = 100;
int a[n], b[n];

# pragma omp parallel for
for(int i = 0; i < n; ++i)
a[i] = i;

# pragma omp parallel for
for(int i = 0; i < n; ++i)
b[i] = i * 2;      

}

After optimization

Preliminary benchmarks

Program wall time, as measured on example two_arrays,  and 
GCC optimization level –O0, showing average speedup of factor 
3.4, on executing machine: Darwin kernel v. 20.6.0, i386 processor, 
with 4 cores and 16 GB RAM.

OPTIMIZE(c_program : str) -> [str] 

Parse C program into Abstract Syntax Tree (AST)

Recursively for each loop in AST: 

1. Find primary dependencies of loop body variables

2. Build a directed graph of dependencies 

3. Compute strongly connected components (SCC) 

4. Separate SCCs into subgraphs 

5. Split the loops based on subgraphs 

6. Insert each split loop into AST 

Reconstruct C program from AST using C generator

Return optimized program

Semantic-preserving optimization algorithm for automatic program parallelization

Dr. Clément Aubert 1, Dr. Thomas Rubiano 2, 

Neea Rusch 1, and Dr. Thomas Seiller 2,3

Source code: https://github.com/statycc/pyalp

We hypothesize combining this algorithm with OpenMP [1], 

an existing state-of-the-art shared memory multiprocessing 

programming model, will provide noticeable performance 

gains for resource-intensive computational tasks. 

Our technique pictorially

Conclusion
State of the art tools for loop optimization techniques have 
limitations, e.g., while loops are not optimized [2;3], and 
algorithm redesign and manual effort is required to create potential 
for parallelism [4].

Our technique has potential to address these deficiencies: it is loop-
type agnostic, identifies parallelization opportunities automatically, 
and has already demonstrated preliminary performance gains.

Open questions and future work

• Development of cost-benefit analysis to ensure gain
• Implementation need to be extended to support for richer C 

language syntax, but algorithm and prototype already exist
• Completing further benchmarking and measurements

Step 2. Split computation horizontally

Step 3. Parallelize

Gain time

Step 1. Identify flow-independencies
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Development is currently underway for an open-source tool implementing 
this technique on a subset of C programming language.
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