Rank the following isotopes in all the categories shown below.

A manganese-52 B $^{56}Fe^{2+}$ C $^{54}Fe^{3+}$
D $^{129}_{52}Te^{2-}$ E ^{40}Ca F $^{108}Ag^{+}$

most protons 1___D___ 2_F__ 3_B = C__ 4___ 5_A__ 6___E__ fewest protons
most electrons 1___D___ 2_F__ 3_A_ 4__B_ 5_C_ 6___E__ fewest electrons
most neutrons 1___D_ 2_F__ 3_B_ 4__C_ 5_A_ 6_E__ fewest neutrons

Explain your reasoning below. Include the number of protons, neutrons and electrons in each isotope as part of your answer. A general “how you figured it out” is sufficient, rather than the calculation/logic for each isotope.

The number of protons is the same as the atomic number from the periodic table.
The number of neutrons is determined by subtracting the number of protons from the mass number, which is given as a superscript to the left of the symbol or following the name.
The number of electrons is equal to the number of protons for an atom. If the charge (found as a superscript on the right of the symbol) is positive, the number of electrons is fewer than the protons by the magnitude of the charge. If the charge is negative, the number of electrons is greater than the protons by the magnitude of the charge.

^{56}Mn has 25 protons, 52-25 = 27 neutrons and 25 electrons.

$^{56}Fe^{2+}$ has 26 protons, 56-26 = 30 neutrons and 26-2 = 24 electrons.

$^{54}Fe^{3+}$ has 26 protons, 54-26 = 28 neutrons and 26-3 = 23 electrons.

$^{129}_{52}Te^{2-}$ has 52 protons, 129-52 = 77 neutrons and 52+2= 54 electrons.

^{40}Ca has 20 protons, 40-20 = 20 neutrons and 20 electrons.

$^{108}Ag^{+}$ has 47 protons, 108 – 47 = 61 neutrons and 47 – 1 = 46 electrons.