Course Homepage

Table 1.  Nuclear Chemistry Versus Traditional Chemistry

 

Traditional

 

Nuclear

 

reactivity depends primarily on valence electrons, nucleus does not participate

 

in a reaction, electrons are irrelevant, only nucleus is considered

 

mass is conserved

 

mass is converted to energy and back

E = mc2

 

atoms are same on both side

 

nucleons same on both sides

 

 

 

energies involved much higher than traditional

 


Table 2. Properties of Elementary Particles

 

Class                name                symbol             charge              mass     other information

(me*)

photon              gamma            γ                      0                      0         

 

lepton               neutrino            v                      0                      0          associated with e or μ

electron            e,β-                   -1                     1         

positron            β+                     +1                    1

muon                μ+,-                   ±1                    207      μ ® e + v + v

 

hadron

 meson             pion                  π+,-                   ±1                    273.2   π ® μ + v (anti if -)

pion                  π0                     0                     226.2   π®γ +  γ

kaon                 K+, K-              ±1                    966.1

 

baryon              proton              p                      +1                    1836   

neutron             n                      0                      1838.6 n- p + e + v

 

 

 

*me is the mass of an electron 0.000549 dalton or 9.100 X 10-28 g

 

**neutrinos and antineutrinos have some mass, but it is too small to be measured.

 

Antiparticles are represented with a bar over the symbol.  Charged antiparticles have all the same properties as the regular particle, but are opposite charges.  A positron is the antiparticle of an electron.  


Table 3.  Types of Radioactive Emissions

 

type

symbol

mass (Da)

charge

mass number

Q factor

velocity*

pentration

alpha

a

4.0026

+2

4

20

0.1c

low

beta

β-, e

0.0055

-1

0

 1

0.9c

low to moderate

positron**

β+

0.0055

+1

0

 1

0.9c

low to moderate

gamma

γ

0

0

0

 1

c

high

proton

p

1.0073

+1

1

10

0.1c

low to moderate

neutron

n

1.0087

0

1

2-10

0.1c

very high

x-ray

x

0

0

0

1

c

high

 

 

 

* this is the maximum velocity, where c represents the speed of light

 

** positrons usually only exist for a nanosecond before being annhilated by colliding with an electron and being converted to energy

 

 

 


Table 4.  Acute Effects of Radiation3

 

dose                 effect

(rem)

 

25-50               number of white blood cells decreases (temporary)

temporary sterility

 

200                  damage to bone marrow (not complete and reversible)

GI symptons, nausea and vomiting

general malaise and fatigue

loss of hair

some deaths

 

450                              approximate LD50/30 (50% of the population exposed to this dose would die in 30 days of exposure

 

400-600           complete but reversible loss of bone marrow function

more severe symptoms as at 200 rem

 

700                  irreversible bone marrow damage

survival unlikely

 

1000                severe diarrhea, nausea and vomiting soon after exposure

death probable in 1-2 weeks

 

2000                central nervous system damaged

unconsciousness within minutes, death in hours or days

 

 


Appendix 1. Units in Nuclear chemistry

 

Bequerel (Bq) -- one disintegration per second

 

Curie (Ci) -- 3.7 X 1010 disintegrations per second

 

Dose -- quantity of energy that is actually put into a medium by the incoming radiation

 

Does equivalent (H) --- absorbed dose multiplied by the quality factor.  Usual unit is “rem”

 

Exposure (X) ---total electrical charge (ionization) produced in a given mass (or volume) of air

 

Gray (Gy) -- dose that will deposit one joule of energy in one kilogram of absorbing material

 

Linear energy transfer (LET) -- rate at which energy is transferred to a given region of matter.  Usual units are keV/μm

 

Quality factor (Q) -- related to LET to account for differences in types of radiation

 

Rad (rad) -- dose that will deposit 0.01 J of energy in one kilogram of absorbing material

 

Rem (rem) -- dose in rads times Q; measurement of dose equivalent

 

Röntgen (R) -- quantity of x of γ radiation that would produce 1 esu of electrical charge in 0.001293 g of dry air (1  cm3at STP). 

 

Sievert (Sv) -- measurement of dose equivalent; dose in gray times Q

 

Equivalents

 

1 R º 2.58 X 10-4 C/kg                           for γ rays only, 1 R » 1 rad

 

1 rad = 10-2 J/kg                                                rem = rad x Q

 

1 Gy = 1 J/kg = 100 rad                         Sv = Gy x Q

 

   For γ rays: Exposure Rate (mR/h) = 6 AEn/d2

A = activity (mCi); E = energy of γ ray; n number of γ rays of energy E emitted per decay; d = distance to source (ft)

 

  For β rays: dose rate (mrad/h) = 338000 A/d2

A = activity (mCi); d = distance (cm)

 

 

Course home pageChemistry4210.html