What is the solubility of gold(III) iodide in 0.02 M NaNO₃?

$$NaNO_3 \rightarrow Na^+ + NO_3^-$$

$$AuI_3 \rightleftharpoons Au^{3+} + 3I$$

$$\mu = \frac{1}{2} \Sigma(z^2 [ion]) = \frac{1}{2} [1^2 \cdot 0.02 = 1^2 \cdot 0.02] = 0.02 M$$

$$Ksp = A_{Au}A_I^3 = \gamma_{Au}[Au^{3+}](\gamma_I[T])^3 = 1.0 \text{ x } 10^{-46}$$

 $\gamma_{Au}=0.405$ (best guess based on other +3 metal ions and interpolating between 0.445 and 0.245)

$$\gamma_{I} = 0.805$$

$$1.0 \times 10^{-46} = (0.405x)(0.805 \cdot 3x)^3 = 5.70x^4$$

$$2.0 \times 10^{-12} = x = solubility$$

What is the solubility of CaCO₃ in 0.010 M Na₂CO₃?

$$CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$$

$$Na_2CO_3 \rightarrow 2 Na^+ + CO_3^{2-}$$

$$\mu = \frac{1}{2} \Sigma z^2 [ion] = \frac{1}{2} [1^2 \cdot 0.02 + 2^2 \cdot 0.01] = 0.030 M$$

$$Ksp = A_{Ca} \cdot A_{CO3} = \gamma_{Ca} [Ca^{2+}] \gamma_{CO3} [CO_3^{2-}] = 4.8 \times 10^{-9}$$

 $\gamma_{Ca} = 0.580$ (half way between 0.01 and 0.5 ionic strengths) $\gamma_{CO3} = 0.560$

$$4.8 \times 10^{-9} = [.580x][0.560(0.01 + x)]$$

 $assume \ x \ is \ small$
 $4.8 \times 10^{-9} = 0.580x(0.560)(0.01) = 0.00325x$

$$4.8 \times 10^{-9} = 0.580 \times (0.560)(0.01) = 0.00325 \times 10^{-9}$$

$$1.5 \times 10^{-6} \text{ mol/L} = x = \text{solubility}$$

What is the pH of 0.10 M HCOOH in 0.001 M Na₂SO₄?

$$HCOOH \rightleftharpoons H^+ + HCO_2^-$$

$$Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2-}$$

$$\mu = \frac{1}{2} \Sigma z^2 [ion] = \frac{1}{2} [1^2 \cdot 0.002 + 2^2 \cdot 0.001] = 0.003 M$$

$$Ka = A_H \cdot A_{HCO2} / A_{HCOOH} = \gamma_H [H^{\dagger}] \gamma_{HCO2} [HCO_2^{\dagger}] / \gamma_{HCOOH} [HCOOH]$$

$$y_H = 0.950$$

$$\gamma_{HCO2} = 0.945$$

 $\gamma_{HCOOH} = 1$ (all nonions have $\gamma = 1$)

$$1.8 \times 10^{-4} = 0.950(x)0.945(x)/(0.10-x)$$

$$2.0 \times 10^{-4} = x^2/(0.01-x)$$

$$2.0 \times 10^{-5} - 2.0 \times 10^{-4} = x^2$$

$$0 = x^2 + 2.0 \times 10^{-4} x - 2.0 \times 10^{-5}$$

$$x = [(-2.0 \times 10^{-4}) + \sqrt{(2.0 \times 10^{-4})^2 + 4(2.0 \times 10^{-5})}]/2 = 4.4 \times 10^{-3} = [H^+]$$

$$pH = -log A_H = -log (0.95 \cdot 4.4 \times 10^{-3}) = 2.38$$

What is the pH of 0.050 M KNO₂?

$$KNO_2 \rightarrow K^+ + NO_2^-$$

$$NO_2^- + H_2O \implies HNO_2 + OH^-$$

$$\mu = \frac{1}{2} \Sigma z^2 [ion] = \frac{1}{2} [0.05 + 0.05] = 0.050 M$$

$$K_b = A_{HNO2} \cdot A_{OH} / A_{NO2} = \gamma_{HNO2} [HNO_2] \gamma_{OH} [OH] / \gamma_{NO2} [NO_2]$$

$$\gamma_{HNO2} = 1$$
 (not an ion)

$$\gamma_{OH} = 0.81$$

$$\gamma_{NO2} = 0.805$$

$$Kb = Kw/Ka = 1.0 \times 10^{-14} / 4.5 \times 10^{-4} = 2.2 \times 10^{-11}$$

$$2.2 \times 10^{-11} = (x)(0.81x)/(0.805 \cdot 0.050)$$

$$1.1 \times 10^{-12} = x^2$$

$$1.0 \times 10^{-6} = x = [OH]$$

$$pOH = -logA_{OH} = -log(0.81 \cdot 1.0 \times 10^{-6}) = 6.07$$

$$pH = 14.00 - pOH = 7.93$$

What is the pH of 0.050 M CH₃COOH and 0.050 M NaCH₃CO₂?

$$CH_3COOH \rightleftharpoons H^+ + CH_3CO_2^ NaCH_3CO_2 \rightarrow Na^+ + CH_3CO_2^ Ac = CH_3CO_2^ \mu = \frac{1}{2} [1^2 \cdot 0.05 + 1^2 \cdot 0.05] = 0.050 \, M$$
 $Ka = A_{H'}A_{Ac}/A_{HAc} = \gamma_{H}[H^+]\gamma_{Ac}[Ac]/\gamma_{HAc}[HAc]$
 $\gamma_{H} = 0.86$
 $\gamma_{Ac} = 0.82$
 $\gamma_{HAc} = 1 \, (not \, an \, ion)$
 $1.8 \, x \, 10^{-5} = (0.86x)(0.82 \cdot 0.05)/(0.05)$
 $2.6 \, X \, 10^{-5} = x = [H^+]$
 $pH = -\log (0.86 * 2.6 \, x \, 10^{-5}) = 4.66$

What is the pH of 0.010 M ZnCl₂?

$$ZnCl_2 \rightarrow Zn^{2+} + 2Cl$$

$$[Zn(H_2O)_6]^{2+} \rightleftharpoons H^+ + [Zn(OH)(H_2O)_5]^+$$

$$Ka = A_{ZnOH} A_H / A_{Zn} = 2.5 \times 10^{-10}$$

$$\mu = \frac{1}{2} [4.0.01 + 1.0.01] = 0.030 M$$

$$\gamma_{zn} = 0.58$$
 (half way between values for 0.01 and 0.05)

$$\gamma_H = 0.887 \ (ditto)$$

 $\gamma_{ZnOH} = 0.871$ (use the same size as the Zn^{2+} ion, but with the ± 1 line)

$$2.5 \times 10^{-10} = (0.871x)(0.887x)/(0.58 \cdot 0.01)$$

$$4.3 \times 10^{-6} = x$$

$$A_H = (0.887)(4.3 \times 10^{-6}) = 3.8 \times 10^{-6}$$

$$pH = -log A_H = 5.42$$

What is the solubility of barium sulfate in 0.002 M Fe(NO₃)₃?

$$Fe(NO_3)_3 \rightarrow Fe^{3+} + 3NO_3^{-1}$$

$$BaSO_4 \rightleftharpoons Ba^{2+} + SO_4^{2-}$$

$$\mu = \frac{1}{2} [9.0.002 + 1.0.006] = 0.012 M$$

(use 0.01 M as close enough for determining activity coefficients)

$$Ksp = A_{Ba} \cdot A_{SO4}$$

$$1.1 \times 10^{-10} = \gamma_{ba}[Ba^{2+}]\gamma_{SO4}[SO_4^{2-}]$$

$$\gamma_{Ba}=0.67$$

$$\gamma_{SO4} = 0.660$$

$$1.1 \times 10^{-10} = (0.67)x(0.66)x$$

$$1.6 \times 10^{-5} \text{ mol/L} = x = \text{solubility}$$