public class Rectangle extends Object { // We have a notion of inheritance, and of Object
class
/* Fields */
private double width;
private double length;
/*
* Constructors
*/
public Rectangle(double width, double length) { // A custom constructor
this.width = width;
this.length = length;
}
public Rectangle() { // A second, "no arg" constructor
this.width = 0;
this.length = 0;
}
// Java will know which one we are calling using the signature (name + input type and order of the method)
/*
* Getters and setters
* There are no properties in Java.
*/
// Getters, defined manually
public double getLength() {
return length;
}
public double getWidth() {
return width;
}
// Setters, defined manually
public void setLength(double l) {
length = l;
}

public void setWidth(double width) {
 this.width = width; // We can use the "this" keyword to overcome shadowing.
}

public final double getArea() { // final makes that this method can't be overridden, even
 return length * width;
}

public String toString() {
 return ("This rectangle is " + width + " x " + length + " (" + getArea() + ")");
}

public boolean equals(Rectangle r) {
 return r.length == this.length && r.width == this.width;
}

Demo.java

import java.util.Scanner; // Importing a java API to read from the keyboard.

public class Demo { // Class header
 public static void main(String[] args) { // Method name
 System.out.println("Hi"); // "System" is a Class, "out" an object in this class,
 // "println" a method, and "Hi" a String literal.

 int number_of_students = 6; // Variables start with lower case.
 boolean myFlag = true;
 char letter = 'c';
 double tax = 3.2;
 // There is no "decimal" datatype in Java: for monetary amounts, use the BigDecimal
 // class.

 if (!myFlag) { // The boolean operators are !, && and ||.
 */
 * Datatypes
 */
 int number_of_students = 6; // Variables start with lower case.
 boolean myFlag = true;
 char letter = 'c';
 double tax = 3.2;
 // There is no "decimal" datatype in Java: for monetary amounts, use the BigDecimal
 // class.

 */
 * If-else-if
 */
 if (!myFlag) { // The boolean operators are !, && and ||.
System.out.println("Hi to all " + number_of_students + " of you" + "\n \t" + letter);
 \n // Escape sequences, \n for new line, \t for tabulation
} else if (tax > 4) {
 System.out.printf("%d, %f, %s, %c \n", 3, 2.5, "Clément", 'C'); // Cf. below for string formatting
} else {
 System.out.printf("%f \n", (++tax)); // prefix increment operator: increment, and then display on the screen
}

/*
* Displaying on the screen
* The syntax is %[flags][width][.precision]conversion
* Where a flag is
* • , to use comma separators
* • 07, to pad with e.g. seven "0"s.
* • -, to left justify
* width is the width of the field printed
* precision is when the value should be rounded
* and the conversion is
* • f for floating point
* • d for integer
* • s for string
* • c for character
*/

System.out.printf("%07d \n", 1234); // 0001234
System.out.printf("%09.2f \n", 1.234); // 000001.23
System.out.printf("%.1f \n", 78.427); // 78.4
System.out.printf("%20f \n", 12.4); // 12.400000
System.out.printf("%-10s %10s \n", "Bob", "Jane"); // Bob Jane
System.out.printf("%s \n", 1234); // 1234 -- We can use type casting.

/*
* String
*/

String name = "Totoro";
int size = name.length(); // length is a method in the String class.

if (name.equals("Clément")) { // We can't use equal sign to compare strings, we have to use a method.
 System.out.print("We have the same name!");
}

/*
* Reading from keyboard
*/

Scanner key = new Scanner(System.in);
String your_name = key.nextLine();
System.out.print("Enter your age:\n");
int your_age = key.nextInt();
System.out.print(your_name + " entered " + your_age + ".\n");

/
* While loops
*/
int y = 0;
while (y < 3 & myFlag) {
 System.out.printf("x is %d, let's increment it.\n", y);
y++;
}

/
* Array and for loops.
*/
int[] numbers; //Declares array reference variable.
numbers = new int[6]; // Actually creates the array and assign its adress to numbers.
for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i;
 System.out.println(numbers[i]);
}
for (int z = 4; z > 2; z--) {
 System.out.printf("z is %d, let's decrement it.\n", z);
}

// We can use the shorthand notation:
int[] intArray = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// We have exceptions, like:
try {
 for (int i = 0; i < intArray.length; i++) // try to replace the < with <= to raise the
 // exception.
 System.out.print(intArray[i] + " ");
} catch (StringIndexOutOfBoundsException e) {
 System.out.print("StringIndexOutOfBoundsException");
}

/*
* Creating objects created in a different class.
* You have to compile Rectangle.java in the same folder for this to work.
*/
Rectangle box1 = new Rectangle(2, 4);
Rectangle box2 = new Rectangle();

/*
* Using methods.
*/
System.out.print(box1 + "\n"); // Implicitely call the toString() method.
System.out.print(box1.equals(box2) + "\n"); // Gets evaluated to false. We can't use equal sign to compare those objects.
System.out.print(box1.getArea() + "\n"); // Example of another method.

/*
 * Of course, you can also have lambda expressions, tuples, ArrayList ("resizable arrays"), interfaces, polymorphism, etc.
 * If you can write a program in an object-oriented programming language, then you can write it in Java.
 */